Skip to main content

Myelin Molecules Limiting Nervous System Plasticity

  • Chapter
Guidance Cues in the Developing Brain

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 32))

During development, nerve growth cones are guided by a balance of positive and negative cues that ensure robust axon outgrowth and fine-tuned control of direction and trajectory (Stoeckli and Landmesser 1998). In contrast to the embryonic environment, the injured adult central nervous system (CNS) in mammals is overwhelmingly inhibitory for axon outgrowth, severely limiting nerve regeneration (Fry 2001). The inability of axons to regrow after CNS injury has profound medical consequences. This is most evident in the lack of recovery from spinal cord injuries, which result in life-long loss of function for millions of people worldwide (Geisler et al. 2001;,Sekhon and Fehlings 2001). The pathology of brain trauma, stroke, and progressive multiple sclerosis are also negatively impacted by limitations on axon outgrowth in the CNS. The discovery of the molecular mechanisms that render the CNS such an inhospitable environment for nerve regeneration may provide new approaches to enhance recovery of nerve damage after injury or disease (Kwon and Tetzlaff 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asher RA, Morgenstern DA, Moon LD, Fawcett JW (2001) Chondroitin sulphate pro-teoglycans: inhibitory components of the glial scar. Prog Brain Res 132:611–619

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow CE, Loschinger J (1997) Developmental changes in neuronal responsiveness to the CNS myelin-associated neurite growth inhibitor NI-35/250. Eur J Neurosci 9:2743–2752

    Article  PubMed  CAS  Google Scholar 

  • Bartsch S, Montag D, Schachner M, Bartsch U (1997) Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG). Brain Res 762:231–234

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Anliker B, Becker CG, Taylor J, Schachner M, Meyer RL, Bartsch U (2000) Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29:330–346

    Article  PubMed  CAS  Google Scholar 

  • Benfey M, Aguayo AJ (1982) Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296:150–152

    Article  PubMed  CAS  Google Scholar 

  • Bovolenta P, Fernaud-Espinosa I (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61:113–132

    Article  PubMed  CAS  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  CAS  Google Scholar 

  • Brittis PA, Flanagan JG (2001) Nogo domains and a Nogo receptor: implications for axon regeneration. Neuron 30:11–14

    Article  PubMed  CAS  Google Scholar 

  • Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 20:8061–8068

    PubMed  CAS  Google Scholar 

  • Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMPdependent mechanism. Neuron 22:89–101

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988a) Antibody against myelin-associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron 1:85–96

    Article  CAS  Google Scholar 

  • Caroni P, Schwab ME (1988b) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106:1281–1288

    Article  CAS  Google Scholar 

  • Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439

    Article  PubMed  CAS  Google Scholar 

  • Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234

    Article  PubMed  CAS  Google Scholar 

  • Collins BE, Kiso M, Hasegawa A, Tropak MB, Roder JC, Crocker PR, Schnaar RL (1997) Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem 272:16889–16895

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs in the immune system. Immunology 103:137–145

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Kelm S, Hartnell A, Freeman S, Nath D, Vinson M, Mucklow S (1996) Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily. Biochem Soc Trans 24:150–156

    PubMed  CAS  Google Scholar 

  • Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A (1998) Siglecs: a family of sialic-acid binding lectins. Glycobiology 8(2):v

    Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    Article  PubMed  CAS  Google Scholar 

  • De Bellard ME, Filbin MT (1999) Myelin-associated glycoprotein, MAG, selectively binds several neuronal proteins. J Neurosci Res 56:213–218

    Article  PubMed  Google Scholar 

  • DeBellard ME, Tang S, Mukhopadhyay G, Shen Y-J, Filbin MT (1996) Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 7:89–101

    Article  PubMed  CAS  Google Scholar 

  • Fidler PS, Schuette K, Asher RA, Dobbertin A, Thornton SR, Calle-Patino Y, Muir E, Levine JM, Geller HM, Rogers JH, Faissner A, Fawcett JW (1999) Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 19:8778–8788

    PubMed  CAS  Google Scholar 

  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    PubMed  CAS  Google Scholar 

  • Fournier AE, Strittmatter SM (2001) Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 11:89–94

    Article  PubMed  CAS  Google Scholar 

  • Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346

    Article  PubMed  CAS  Google Scholar 

  • Fruttiger M, Montag D, Schachner M, Martini R (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J Neurosci 7:511–515

    Article  PubMed  CAS  Google Scholar 

  • Fry EJ (2001) Central nervous system regeneration: mission impossible? Clin Exp Pharmacol Physiol 28:253–258

    Article  PubMed  CAS  Google Scholar 

  • Geisler FH, Coleman WP, Grieco G, Poonian D (2001) Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine 26:568–586

    Google Scholar 

  • Goldberg JL, Barres BA (2000) Nogo in nerve regeneration. Nature 403:369–370

    Article  PubMed  CAS  Google Scholar 

  • GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439–444

    Article  PubMed  CAS  Google Scholar 

  • Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, McKerracher L, Braun PE, David S (1999) A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24:639–647

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Schwab ME (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381:407–419

    Article  PubMed  CAS  Google Scholar 

  • Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22:2792–2803

    PubMed  CAS  Google Scholar 

  • Kelm S, Pelz A, Schauer R, Filbin MT, Song T, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, Crocker PR (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4:965–972

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  PubMed  CAS  Google Scholar 

  • Kwon BK, Tetzlaff W (2001) Spinal cord regeneration: from gene to transplants. Spine 26:S13–S22

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19:7537–7547

    PubMed  CAS  Google Scholar 

  • Li M, Shibata A, Li C, Braun PE, McKerracher L, Roder J, Kater SB, David S (1996) Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J Neurosci Res 46:404–414

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wada R, Kawai H, Sango K, Deng C, Tai T, McDonald MP, Araujo K, Crawley JN, Bierfreund U, Sandhoff K, Suzuki K, Proia RL (1999) A genetic model of substratedeprivation therapy for a glycosphingolipid storage disorder. J Clin Invest 103:497–505

    Article  PubMed  CAS  Google Scholar 

  • Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180 McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:173–180

    Google Scholar 

  • McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778–10788

    PubMed  CAS  Google Scholar 

  • McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    Article  PubMed  CAS  Google Scholar 

  • Merkler D, Metz GA, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    PubMed  CAS  Google Scholar 

  • Moon LD, Asher RA, Rhodes KE, Fawcett JW (2002) Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat. Neuroscience 109:101–117

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    Article  PubMed  CAS  Google Scholar 

  • Niederost BP, Zimmermann DR, Schwab ME, Bandtlow CE (1999) Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci 19:8979–8989

    PubMed  CAS  Google Scholar 

  • Poltorak M, Sadoul R, Keilhauer G, Landa C, Fahrig T, Schachner M (1987) Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyteoligo-dendrocyte interaction. J Cell Biol 105:1893–1899

    Article  PubMed  CAS  Google Scholar 

  • Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS (2000) Inhibitor of neurite outgrowth in humans. Nature 403:383–384

    Article  PubMed  CAS  Google Scholar 

  • Raineteau O, Fouad K, Noth P, Thallmair M, Schwab ME (2001) Functional switch between motor tracts in the presence of the mAb IN-1 in the adult rat. Proc Natl Acad Sci USA 98:6929–6934

    Article  PubMed  CAS  Google Scholar 

  • Schäfer M, Fruttiger M, Montag D, Schachner M, Martini R (1996) Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron 16:1107–1113

    Article  PubMed  Google Scholar 

  • Schnaar RL (2000) Glycobiology of the nervous system. In: Ernst B, Hart GW, Sinay P (eds) Carbohydrates in chemistry and biology, part II. Biology of saccharides. WileyVCH, Weinheim, pp 1013–1027

    Chapter  Google Scholar 

  • Schwab ME (2002) Repairing the injured spinal cord. Science 295:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8:2381–2393

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1985) Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci 5:2415–2423

    PubMed  CAS  Google Scholar 

  • Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12

    Article  PubMed  CAS  Google Scholar 

  • Selles-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167:282–289

    Article  PubMed  CAS  Google Scholar 

  • Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    CAS  Google Scholar 

  • Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109:111–130

    Article  PubMed  CAS  Google Scholar 

  • Song H, Ming G, He Z, Lehmann M, Tessier-Lavigne M, Poo M (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • Spillmann AA, Bandtlow CE, Lottspeich F, Keller F, Schwab ME (1998) Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem 273:19283–19293

    Article  PubMed  CAS  Google Scholar 

  • Stoeckli ET, Landmesser LT (1998) Axon guidance at choice points. Curr Opin Neurobiol 8:73–79

    Article  PubMed  CAS  Google Scholar 

  • Strenge K, Brossmer R, Ihrig P, Schauer R, Kelm S (2001) Fibronectin is a binding partner for the myelin-associated glycoprotein (siglec-4a). FEBS Lett 499:262–267

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Schnaar RL (2000) Myelin-associated glycoprotein is selectively and progressively downregulated in the central and peripheral nervous systems of complex ganglio-side knockout mice. Glycobiology 10:1087–1088

    Google Scholar 

  • Svennerholm L (1994) Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog Brain Res 101:xi-xiv

    Google Scholar 

  • Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296:160–170

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD (1990) Myelin-associated glycoprotein. Location and potential functions. Ann NY Acad Sci 605:29–43

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Andrews SB, Cootauco C, Quarles R (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 109:2417–2426

    Article  PubMed  CAS  Google Scholar 

  • Van Vactor D, Flanagan JG (1999) The middle and the end: slit brings guidance and branching together in axon pathway selection. Neuron 22:649–652

    Article  PubMed  Google Scholar 

  • Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b: a mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    Article  PubMed  CAS  Google Scholar 

  • Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    Article  PubMed  CAS  Google Scholar 

  • Weiss MD, Luciano CA, Quarles RH (2001) Nerve conduction abnormalities in aging mice deficient for myelin-associated glycoprotein. Muscle Nerve 24:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Yang LJS, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    PubMed  CAS  Google Scholar 

  • Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    Article  PubMed  CAS  Google Scholar 

  • GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551

    Article  PubMed  CAS  Google Scholar 

  • Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor. Science 297:1190–1193

    Article  PubMed  CAS  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002a) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    Article  CAS  Google Scholar 

  • Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002b) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944

    Article  CAS  Google Scholar 

  • Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnaar, R.L. (2003). Myelin Molecules Limiting Nervous System Plasticity. In: Kostović, I. (eds) Guidance Cues in the Developing Brain. Progress in Molecular and Subcellular Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55557-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55557-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62426-1

  • Online ISBN: 978-3-642-55557-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics