Skip to main content

Parallel Processing Model for Syntactic Pattern Recognition-Based Electrical Load Forecast

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

Abstract

A model of a recognition of distorted/fuzzy patterns for a electrical load forecast is presented in the paper. The model is based on a syntactic pattern recognition approach. Since a system implemented on the basis of the model is to perform in a real-time mode, it is parallelized. An architecture for parallel processing and a method of tasks distribution is proposed. First experimental results are also provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfares, H.K., Nazeeruddin, M.: Electric load forecasting: literature survey and classifcation of methods. Int. J. Syst. Sci. 33, 23–34 (2002)

    Article  MATH  Google Scholar 

  2. Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition Theory and Applications. World Scientific, Singapore (1990)

    MATH  Google Scholar 

  3. Chiang Y., Fu K.S.: Parallel parsing algorithms and VLSI implementation for syntactic pattern recognition. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 302–313 (1984)

    Google Scholar 

  4. Emary, I.M., Ramakrishnan, S.: On the application of various probabilistic neural networks in solving different pattern classification problems. World Appl. Sci. J. 4, 772–780 (2008)

    Google Scholar 

  5. FlasiƄski, M., Jurek, J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recogn. 32, 671–690 (1999)

    Article  Google Scholar 

  6. FlasiƄski, M., Jurek, J.: On the analysis of fuzzy string patterns with the help of extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae 71, 1–14 (2006). IOS Press, Amsterdam

    MATH  MathSciNet  Google Scholar 

  7. FlasiƄski, M., Jurek, J., MyƛliƄski, S.: Multi-agent system for recognition of hand postures. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 815–824. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. FlasiƄski, M., Jurek, J.: Syntactic pattern recognition: survey of frontiers and crucial methodological issues. Adv. Intell. Soft Comput. 95, 187–196 (2011). Springer, Berlin

    Article  Google Scholar 

  9. FlasiƄski M., Jurek J., Fundamental methodological issues of syntactic pattern recognition. Pattern Anal. Appl. (2013) (in print). Springer

    Google Scholar 

  10. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  11. Goodman, R.M., Higgins, C.M., Miller, J.W.: Rule-based neural networks for classification and probability estimation. Neural Comput. 4, 781–804 (1992)

    Article  Google Scholar 

  12. Guerra, C.: 2d object recognition on a reconfigurable mesh. Pattern Recogn. 31, 83–88 (1998)

    Article  MathSciNet  Google Scholar 

  13. Jurek, J.: Syntactic pattern recognition-based agents for real-time expert systems. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 161–168. Springer, Heidelberg (2002)

    Google Scholar 

  14. Jurek, J.: Towards grammatical inferencing of GDPLL(k) grammars for applications in syntactic pattern recognition-based expert systems. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 604–609. Springer, Heidelberg (2004)

    Google Scholar 

  15. Jurek, J.: Recent developments of the syntactic pattern recognition model based on quasi-context sensitive languages. Pattern Recogn. Lett. 26, 1011–1018 (2005). Elsevier, Amsterdam

    Article  Google Scholar 

  16. Jurek, J.: Generalisation of a language sample for grammatical inference of GDPLL(k) grammars. Adv. Soft Comput. 45, 282–288 (2007). Springer, Berlin

    Article  Google Scholar 

  17. Jurek, J.: Grammatical inference as a tool for constructing self-learning syntactic pattern recognition-based agents. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 712–721. Springer, Heidelberg (2008)

    Google Scholar 

  18. Jurek, J., Peszek, T.: On the use of syntactic pattern recognition methods, neural networks, and fuzzy systems for short-term electrical load forecasting. Adv. Soft Comput. 30, 851–858 (2005). Springer, Berlin

    Article  Google Scholar 

  19. Jurek, J., Peszek, T.: Model of syntactic recognition of distorted string patterns with the help of GDPLL(k)-based automata. Adv. Intell. Soft Comput. 226, 101–110 (2013)

    Google Scholar 

  20. Lee S.S., Tanaka H.T.: Parallel image segmentation with adaptive mesh. In: Proceedings of the 15th International Conference Pattern Recognition, Barcelona, Spain, vol. 1, pp. 635–639 (2000)

    Google Scholar 

  21. Miguet, S., Montanvert, A., Wang, P.S.P.: Parallel Image Analysis. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  22. Ogiela, M.R., Ogiela, U.: Dna-like linguistic secret sharing for strategic information systems. Int. J. Inf. Manag. 32, 175–181 (2012)

    Article  Google Scholar 

  23. Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)

    MATH  Google Scholar 

  24. Peszek, T.: Neuro–fuzzy prediction systems in energetics. Schedae Informaticae 15, 73–94 (2006)

    Google Scholar 

  25. Ranganathan, N.: VLSI and Parallel Computing for Pattern Recognition and Artificial Intelligence. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  26. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)

    Article  Google Scholar 

  27. Tadeusiewicz, R.: Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa (1993)

    Google Scholar 

  28. Tadeusiewicz, R., FlasiƄski, M.: Rozpoznawanie Obrazów. PaƄstwowe Wydawnictwo Naukowe PWN, Warszawa (1991)

    Google Scholar 

  29. Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  30. Taylor, J., McSharry, P.: Short-term load forecasting methods: an evaluation based on European data. IEEE Trans. Power Syst. 22, 2213–2219 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz FlasiƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

FlasiƄski, M., Jurek, J., Peszek, T. (2014). Parallel Processing Model for Syntactic Pattern Recognition-Based Electrical Load Forecast. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waƛniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics