Skip to main content

An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal Sparse Solver for Radical 2D Hierarchical Meshes

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Abstract

In this paper we present a dynamic programming algorithm for finding optimal elimination trees for the multi-frontal direct solver algorithm executed over two dimensional meshes with point singularities. The elimination tree found by the optimization algorithm results in a linear computational cost of sequential direct solver. Based on the optimal elimination tree found by the optimization algorithm we construct heuristic sequential multi-frontal direct solver algorithm resulting in a linear computational cost as well as heuristic parallel multi-frontal direct solver algorithm resulting in a logarithmic computational cost. The resulting parallel algorithm is implemented on NVIDIA CUDA GPU architecture based on our graph-grammar approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Meth. Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  2. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  4. Calo, V., Collier, N., Pardo, D., Paszyński, M.: Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis. Procedia Comput. Sci. 4, 1854–1861 (2011)

    Article  Google Scholar 

  5. Demkowicz, L.: Computing with hp-Adaptive Finite Elements, vol. I. Chapman & Hall/Crc Applied Mathematics & Nonlinear Science (2006)

    Google Scholar 

  6. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geng, P., Oden, T.J., van de Geijn, R.A.: A parallel multifrontal algorithm and its implementation. Comput. Meth. Appl. Mech. Eng. 149, 289–301 (2006)

    Article  Google Scholar 

  9. Irons, B.: A frontal solution program for finite-element analysis. Int. J. Numer. Meth. Eng. 2, 5–32 (1970)

    Article  MATH  Google Scholar 

  10. Kuźnik, K., Paszyński, M., Calo, V.: Graph grammar-based multi-frontal parallel direct solver for two-dimensional isogeometric analysis. Procedia Comput. Sci. 9, 1454–1463 (2012)

    Article  Google Scholar 

  11. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, University of Minesota, http://www.cs.umn.edu/metis

  12. Paszyńska, A., Paszyński, M., Grabska, E.: Graph transformations for modeling hp-adaptive finite element method with triangular elements. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 604–613. Springer, Heidelberg (2008)

    Google Scholar 

  13. Paszyński, M., Paszyńska, A.: Graph transformations for modeling parallel hp-adaptive finite element method. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1313–1322. Springer, Heidelberg (2008)

    Google Scholar 

  14. Paszyński, M., Calo, V., Pardo, D.: A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities. Comput. Math. Appl. 65(8), 1140–1151 (2013)

    Article  MathSciNet  Google Scholar 

  15. Paszynski, M., Schaefer, R.: Reutilization of partial LU factorizations for self-adaptive hp finite element method solver. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 965–974. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Ślusarczyk, G., Paszyńska, A.: Hypergraph grammars in hp-adaptive finite element method. Procedia Comput. Sci. 18, 1545–1554 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The work of MP and AP was supported by Polish National Science Center grant UMO-2012/07/B/ST6/01229. The work of PG was partly supported by The European Union by means of European Social Fund, PO KL Priority IV: Higher Education and Research, “Activity 4.1: Improvement and Development of Didactic Potential of the University and Increasing Number of Students of the Faculties Crucial for the National Economy Based on Knowledge, Subactivity 4.1.1: Improvement of the Didactic Potential of the AGH University of Science and Technology Human Assets”, UDA POKL.04.01.01-00-367/08-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciek Paszyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

AbouEisha, H., Gurgul, P., Paszyńska, A., Paszyński, M., Kuźnik, K., Moshkov, M. (2014). An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal Sparse Solver for Radical 2D Hierarchical Meshes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics