Skip to main content

Molecular Mechanisms in Yeast Carbon Metabolism: Bioethanol and Other Biofuels

  • Chapter
  • First Online:
Molecular Mechanisms in Yeast Carbon Metabolism
  • 2573 Accesses

Abstract

Biofuels, such as ethanol, biodiesel and biogas, have the potential to replace a large proportion of transportation fuels that presently are mainly produced from fossil raw materials. Bioethanol, which is the product of the fermentative energy metabolism of yeasts, is currently the major biofuel on the global market. It is to a large extent generated from first-generation substrates, i.e. food grade raw materials. There are huge research efforts to develop ethanol processes based on non-food lignocellulosic materials. Using—omics technologies, metabolic and evolutionary engineering, strains of, predominantly, Saccharomyces cerevisiae have been isolated that display enhanced inhibitor and general stress tolerance, lowered glycerol production and a broadened substrate spectrum (including the fermentation of pentose sugars released from hemicellulose). Expression of these features in industrial isolates may within a relatively short time generate strains robust enough for commercial ethanol production from lignocellulose. S. cerevisiae has also been modified to produce the advanced biofuel butanol. Although yields and production rates are still below the threshold for industrial applications, tools for further developments are now available. Biodiesel production by either oleaginous yeast species that can naturally accumulate high amounts of lipids or by genetically engineered S. cerevisiae are further examples of how yeasts can be used for biofuel production. Sustainable production of biofuels requires the integration of all steps of handling biomass, including preservation, pretreatment, fermentation and conversion of side products into high value compounds. In all these steps, yeasts have great technological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageitos J, Vallejo J, Veiga-Crespo P, Villa T (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227. doi:10.1007/s00253-011-3200-z

    CAS  PubMed  Google Scholar 

  • Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2. doi:10.1186/1754-6834-3-2

    PubMed Central  PubMed  Google Scholar 

  • Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose—an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biot 30:351–357

    CAS  Google Scholar 

  • Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267–1275. doi:10.1007/s00253-011-3437-6

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99(8):3051–3056. doi:http://dx.doi.org/10.1016/j.biortech.2007.06.045

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+ -dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6(6):862–868. doi:10.1111/j.1567-1364.2006.00098.x

    CAS  PubMed  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotech 31(4):335–341. doi:10.1038/nbt.2509

    CAS  Google Scholar 

  • Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88(3):621–636. doi:10.1007/s00253-010-2804-z

    PubMed  Google Scholar 

  • Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer R, Basso L, Amorim H, Oliveira A, Davis R, Ronaghi M, Gharizadeh B, Stambuk B (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics 287(6):485–494. doi:10.1007/s00438-012-0695-7

    CAS  PubMed  Google Scholar 

  • Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163. doi:10.1111/j.1567-1364.2008.00428.x

    CAS  PubMed  Google Scholar 

  • Basso TO, de Kok S, Dario M, do Espirito-Santo JC, Müller G, Schlölg PS, Silva CP, Tonso A, Daran JM, Gombert AK, van Maris AJ, Pronk JT, Stambuk BU (2011) Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 13(6):694–703. doi:10.1016/j.ymben.2011.09.005

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387. doi:10.1016/j.plipres.2009.08.005

    CAS  PubMed  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789. doi:10.1128/AEM.01412-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206. doi:10.1007/s00253-011-3212-8

    CAS  PubMed  Google Scholar 

  • Bergdahl B, Heer D, Sauer U, Hahn-Hägerdal B, van Niel EW (2012) Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels 5(1):34. doi:10.1186/1754-6834-5-34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87(4):1487–1497. doi:10.1007/s00253-010-2619-y

    CAS  PubMed  Google Scholar 

  • Blomqvist J, Nogue VS, Gorwa-Grauslund M, Passoth V (2012) Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast 29(7):265–274. doi:10.1002/yea.2904

    CAS  PubMed  Google Scholar 

  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):68. doi:10.1186/1754-6834-6-68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brat D, Boles E (2013) Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 13(2):241–244. doi:10.1111/1567-1364.12028

    CAS  PubMed  Google Scholar 

  • Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311. doi:10.1128/AEM.02522-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):65. doi:10.1186/1754-6834-5-65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    CAS  Google Scholar 

  • Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17(3):480–488. doi:10.1016/j.cbpa.2013.03.036

    CAS  PubMed  Google Scholar 

  • Buyx A, Tait J (2011) Ethics. Ethical framework for biofuels. Science 332(6029):540–541. doi:10.1126/science.1206064

    CAS  PubMed  Google Scholar 

  • Caspeta L, Buijs NAA, Nielsen J (2013) The role of biofuels in the future energy supply. Energy Environ Sci 6(4):1077–1082. doi:10.1039/c3ee24403b

    CAS  Google Scholar 

  • Chen X, Li Z, Zhang X, Hu F, Ryu DY, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604. doi:10.1007/s12010-008-8491-x

    CAS  PubMed  Google Scholar 

  • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. doi:10.1016/j.ymben.2012.11.002

    CAS  PubMed  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: A review. Renewable Energy 36(12):3541–3549. doi:10.1016/j.renene.2011.04.031

  • Chiesa S, Gnansounou E (2011) Protein extraction from biomass in a bioethanol refinery–possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour Technol 102(2):427–436. doi:10.1016/j.biortech.2010.07.125

    CAS  PubMed  Google Scholar 

  • de Souza Liberal AT, Basilio AC, do Monte Resende A, Brasileiro BT, da Silva-Filho EA, de Morais JO, Simoes DA, de Morais MA, Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102(2):538–547

    Google Scholar 

  • Della-Bianca B, Basso T, Stambuk B, Basso L, Gombert A (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991. doi:10.1007/s00253-012-4631-x

    CAS  PubMed  Google Scholar 

  • Demeke M, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno M, Thevelein J (2013a) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6(1):120. doi:10.1186/1754-6834-6-120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Lidén G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013b) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89. doi:10.1186/1754-6834-6-89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dererie DY, Trobro S, Momeni MH, Hansson H, Blomqvist J, Passoth V, Schnürer A, Sandgren M, Ståhlberg J (2011) Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresour Technol 102(6):4449–4455. doi:10.1016/j.biortech.2010.12.096

    CAS  PubMed  Google Scholar 

  • Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165–173. doi:10.1111/j.1567-1364.2007.00289.x

    CAS  PubMed  Google Scholar 

  • Doshi R, Nguyen T, Chang G (2013) Transporter-mediated biofuel secretion. Proc Natl Acad Sci USA 110(19):7642–7647. doi:10.1073/pnas.1301358110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487. doi:10.1038/msb.2011.21

    PubMed Central  PubMed  Google Scholar 

  • Fujitomi K, Sanda T, Hasunuma T, Kondo A (2012) Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161–166. doi:10.1016/j.biortech.2012.01.161

    CAS  PubMed  Google Scholar 

  • Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C (2012) Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresour Technol 111:398–403. doi:http://dx.doi.org/10.1016/j.biortech.2012.02.004

  • Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund M (2010a) Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3(1):19

    PubMed Central  PubMed  Google Scholar 

  • Garcia Sanchez R, Karhumaa K, Fonseca C, Sànchez Nogué V, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010b) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13. doi:10.1186/1754-6834-3-13

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. doi:10.1016/j.biortech.2010.01.088

    CAS  PubMed  Google Scholar 

  • Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101(13):4842–4850. doi:10.1016/j.biortech.2010.02.002

    CAS  PubMed  Google Scholar 

  • Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474(7352):S6–S8

    CAS  PubMed  Google Scholar 

  • Green EM (2011) Fermentative production of butanol- the industrial perspective. Curr Opin Biotechnol 22(3):337–343. doi:10.1016/j.copbio.2011.02.004

    CAS  PubMed  Google Scholar 

  • Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ (2013) Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Microb Biotechnol. doi:10.1111/1751-7915.12080

    PubMed Central  PubMed  Google Scholar 

  • Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76(1):190–195. doi:10.1128/AEM.01772-09

    PubMed  Google Scholar 

  • Guo ZP, Zhang L, Ding ZY, Shi GY (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 13(1):49–59. doi:10.1016/j.ymben.2010.11.003

    CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    PubMed  Google Scholar 

  • Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J, Shima J (2012) Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J Biosci Bioeng 114(6):648–651. doi:10.1016/j.jbiosc.2012.07.002

    CAS  PubMed  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218. doi:10.1016/j.biotechadv.2011.10.011

    CAS  PubMed  Google Scholar 

  • Hasunuma T, Sung K-m, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(3):997–1004. doi: 10.1007/s00253-011-3085-x

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266. doi:10.1128/AEM.02625-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellström AM, Vázques-Juárez R, Svanberg U, Andlid TA (2010) Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa. Int J Food Microbiol 136(3):352–358. doi:10.1016/j.ijfoodmicro.2009.10.011

    PubMed  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holzer H, Goedde HW (1957) Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem Z 329(3):175–191

    CAS  PubMed  Google Scholar 

  • Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671–2690. doi: 10.1007/s00018-012-0945-1

    CAS  PubMed  Google Scholar 

  • Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847. doi:http://dx.doi.org/10.1016/j.biortech.2009.04.041

  • Huang C, Zong M-h, Wu H, Liu Q-p (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538. doi:http://dx.doi.org/10.1016/j.biortech.2009.04.022

  • Hyvönen R, Olsson BA, Lundkvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L-logging residues. For Ecol Manage 126(2):97–112

    Google Scholar 

  • Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104(5):911–919. doi:10.1002/bit.22457

    CAS  PubMed  Google Scholar 

  • Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8(7):1164–1174. doi:10.1111/j.1567-1364.2008.00429.x

    CAS  PubMed  Google Scholar 

  • Jacob Z (1992) Yeast lipids- extraction, quality analysis, and acceptability. Crit Rev Biotechnol 12(5–6):463–491. doi:10.3109/07388559209114236

    CAS  Google Scholar 

  • Jarecki MK, Lal R (2003) Crop management for soil carbon sequestration. Crit Rev Plant Sciences 22(6):471–502. doi:10.1080/713608318

    Google Scholar 

  • Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts–the ascomycetes. Appl Microbiol Biotechnol 97(2):503–517. doi:10.1007/s00253-012-4497-y

    CAS  PubMed  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70(12):7119–7125. doi:10.1128/AEM.70.12.7119-7125.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5. doi:10.1186/1475-2859-6-5

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi:10.1007/s00253-004-1642-2

    CAS  PubMed  Google Scholar 

  • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159(1–2):32–37. doi:10.1016/j.jbiotec.2012.01.022

    CAS  PubMed  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(6):776–783. doi:10.1007/bf00167144

    Google Scholar 

  • Kreuger E, Sipos B, Zacchi G, Svensson SE, Björnsson L (2011) Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. Bioresour Technol 102(3):3457–3465. doi:10.1016/j.biortech.2010.10.126

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: Current status and future prospects. Renew Sust Energ Rev 15(9):4950–4962. doi:10.1016/j.rser.2011.07.058

  • Kurtzman CP, Fell JW, Boekhout T (2011) The Yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78

    CAS  PubMed  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    CAS  PubMed  Google Scholar 

  • Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46(0):36–45. doi:http://dx.doi.org/10.1016/j.biombioe.2012.03.033

  • Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772. doi:10.1002/ceat.200800048

    CAS  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67(3):1163–1170. doi:10.1128/AEM.67.3.1163-1170.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leong SL, Niba AT, Ny S, Olstorpe M (2012) Microbial populations during maize storage in Cameroon. Afr J Biotechnol 11(35):8692–8697

    Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41(3):312–317. doi:http://dx.doi.org/10.1016/j.enzmictec.2007.02.008

  • Lian J, Garcia-Perez M, Coates R, Wu H, Chen S (2012) Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol 118:177–186. doi:10.1016/j.biortech.2012.05.010

    CAS  PubMed  Google Scholar 

  • Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97(14):6129–6147. doi:10.1007/s00253-013-5014-7

    CAS  PubMed  Google Scholar 

  • Liu H, Zhao X, Wang F, Jiang X, Zhang S, Ye M, Zhao ZK, Zou H (2011) The proteome analysis of oleaginous yeast Lipomyces starkeyi. FEMS Yeast Res 11(1):42–51. doi:10.1111/j.1567-1364.2010.00687.x

    PubMed  Google Scholar 

  • Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H (2009a) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26(10):553–566. doi:10.1002/yea.1706

    PubMed  Google Scholar 

  • Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73(1):27–36. doi:10.1007/s00253-006-0567-3

    CAS  PubMed  Google Scholar 

  • Liu ZL, Ma M, Song M (2009b) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282(3):233–244. doi:10.1007/s00438-009-0461-7

    PubMed Central  PubMed  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147(Pt 9):2409–2415

    CAS  PubMed  Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82(6):1067–1078. doi:10.1007/s00253-008-1794-6

    CAS  PubMed  Google Scholar 

  • Margeot A, Hahn-Hägerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380. doi:10.1016/j.copbio.2009.05.009

    CAS  PubMed  Google Scholar 

  • Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast 30(9):365–378. doi:10.1002/yea.2969

    CAS  PubMed  Google Scholar 

  • Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A (2012) Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 76(11):2139–2141

    CAS  PubMed  Google Scholar 

  • McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nunez A, Butrym ED, Richards MP, Wang CS, Cheng G, Zhao Z, Wang C (2004) Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA 101(51):17593–17598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2011) Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE 6(11):e27966. doi:10.1371/journal.pone.0027966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen J, Larsson C, van Maris A, Pronk J (2013) Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24(3):398–404. doi:10.1016/j.copbio.2013.03.023

    CAS  PubMed  Google Scholar 

  • Nilsson D (2000) Dynamic simulation of straw harvesting systems: Influence of climatic, geographical and biological factors on performance and costs. J Agric Eng Res 76(1):27–36

    Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2(1):69–77. doi:10.1006/mben.1999.0140

    CAS  PubMed  Google Scholar 

  • Odlare M, Arthurson V, Pell M, Svensson K, Nehrenheim E, Abubaker J (2011) Land application of organic waste—Effects on the soil ecosystem. Appl Energy 88(6):2210–2218. doi:10.1016/j.apenergy.2010.12.043

  • Olstorpe M, Passoth V (2011) Pichia anomala in grain biopreservation. Antonie van Leeuwenhoek 99(1):57-62. doi:10.1007/s10482-010-9497-2

  • Özdemir ED, Härdtlein M, Eltrop L (2009) Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets. Energ Policy 37(8):2986–2996. doi:10.1016/j.enpol.2009.03.051

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33. doi:http://dx.doi.org/10.1016/S0960-8524(99)00161-3

  • Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73(13):4354–4356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Passoth V, Eriksson A, Sandgren M, Ståhlberg J, Piens K, Schnürer J (2009) Airtight storage of moist wheat grain improves bioethanol yields. Biotechnol Biofuels 2(1):16

    PubMed Central  PubMed  Google Scholar 

  • Passoth V, Tabassum MR, Nair HA, Olstorpe M, Tiukova I, Ståhlberg J (2013) Enhanced ethanol production from wheat straw by integrated storage and pre-treatment (ISP). Enzyme Microb Technol 52(2):105–110. doi:10.1016/j.enzmictec.2012.11.003

    CAS  PubMed  Google Scholar 

  • Pelletier N, Audsley E, Brodt S, Garnett T, Henriksson P, Kendall A, Kramer KJ, Murphy D, Nemecek T, Troell M (2011) Energy intensity of agriculture and food systems. In: Gadgil A, Liverman DM (eds) Annual review of environment and resources, vol 36. Annual Reviews, Palo Alto, pp 223–246. doi:10.1146/annurev-environ-081710-161014

  • Phadnavis AG, Jensen PR (2013) Production of biodiesel by yeast from lignocellulose and glycerol. USA Patent US 20130137149A1

    Google Scholar 

  • Piper PW (2011) Resistance of yeasts to weak organic acid food preservatives. Adv Appl Microbiol 77:97–113. doi:10.1016/B978-0-12-387044-5.00004-2

    CAS  PubMed  Google Scholar 

  • Qiu H, Sun L, Huang J, Rozelle S (2012) Liquid biofuels in China: current status, government policies, and future opportunities and challenges. Renew Sustain Energy Rev 16(5):3095–3104. doi:http://dx.doi.org/10.1016/j.rser.2012.02.036

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    CAS  PubMed  Google Scholar 

  • Reinertsen SA, Elliott LF, Cochran VL, Campbell GS (1984) Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol Biochem 16(5):459–464. doi:http://dx.doi.org/10.1016/0038-0717(84)90052-X

  • Richard P, Putkonen M, Vaananen R, Londesborough J, Penttilä M (2002) The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochemistry 41 (20):6432–6437. doi:10.1021/bi025529i

  • Richard P, Toivari MH, Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457(1):135–138

    CAS  PubMed  Google Scholar 

  • Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27(4):398–408. doi:http://dx.doi.org/10.1016/j.biotechadv.2008.10.008

  • Rødsrud G, Lersch M, Sjöde A (2012) History and future of world’s most advanced biorefinery in operation. Biomass Bioenergy 46(0):46–59. doi:http://dx.doi.org/10.1016/j.biombioe.2012.03.028

  • Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4(2):157–164

    CAS  PubMed  Google Scholar 

  • Sanchez INV, Bettiga M, Gorwa-Grauslund MF (2012) Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant. AMB Express 2(1):68. doi:10.1186/2191-0855-2-68

    Google Scholar 

  • Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277(8):6478–6482. doi:10.1074/jbc.M109109200

    CAS  PubMed  Google Scholar 

  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53(9):1996–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32(5):422–430. doi:10.1016/j.biombioe.2007.10.014

  • Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZK (2013) Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168(1):85–89. doi:http://dx.doi.org/10.1016/j.jbiotec.2013.08.010

  • Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7. doi:10.1186/1754-6834-5-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168. doi:http://dx.doi.org/10.1016/j.ymben.2006.10.005

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenerg 31(6):416–425. doi:http://dx.doi.org/10.1016/j.biombioe.2007.01.023

  • Sousa MJ, Ludovico P, Rodrigues F, Leão C, Côrte-Real M (2012) Stress and cell death in yeast induced by acetic acid, cell metabolism. In: Bubulya P (ed) Cell homeostasis and stress response. InTech, Rijeka, Croatia, pp 73–100. doi:10.5772/27726

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36. doi:10.1186/1475-2859-7-36

    PubMed Central  PubMed  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin-Biofpr 6(2):159–176. doi:10.1002/Bbb.331

  • Subtil T, Boles E (2011) Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 4:38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161–8163. doi:10.1128/AEM.02356-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Zhang S, Tan H, Zhao Z (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45(2):121–128. doi: 10.1007/s12033-010-9255-8

    CAS  PubMed  Google Scholar 

  • Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS ONE 7(2):e31235. doi:10.1371/journal.pone.0031235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tapia VE, Anschau A, Coradini AL, T TF, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2(1):64. doi:10.1186/2191-0855-2-64

  • Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771(3):255–270. doi:10.1016/j.bbalip.2006.07.004

    CAS  PubMed  Google Scholar 

  • Thompson P (2012) The agricultural ethics of biofuels: the food versus fuel debate. Agriculture 2(4):339–358

    Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Energy. Beneficial biofuels–the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

  • Tiukova I, de Barros Pita W, Sundell D, Momeni MH, Horn SJ, Ståhlberg J, de Morais MA, Jr., Passoth V (2014) Adaptation of Dekkera bruxellensis to lignocellulose-based substrate. Biotechnol Appl Biochem 61(1):51–57. doi:10.1002/bab.1145

  • Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS ONE 8(3):e58455. doi:10.1371/journal.pone.0058455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Träff KL, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19(14):1233–1241. doi:10.1002/yea.913

    PubMed  Google Scholar 

  • Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674. doi:10.1128/AEM.67.12.5668-5674.2001

  • Tully M, Gilbert HJ (1985) Transformation of Rhodosporidium toruloides. Gene 36(3):235–240

    CAS  PubMed  Google Scholar 

  • Valadi H, Larsson C, Gustafsson L (1998) Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50(4):434–439

    CAS  PubMed  Google Scholar 

  • Vallee BL (1998) Alcohol in the western world. Sci Am 278(6):80–85

    CAS  PubMed  Google Scholar 

  • Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306

    PubMed  Google Scholar 

  • Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab Eng 10(6):360–369. doi:10.1016/j.ymben.2007.12.002

    PubMed  Google Scholar 

  • van Zyl C, Prior BA, Kilian SG, Kock JL (1989) D-xylose utilization by Saccharomyces cerevisiae. J Gen Microbiol 135(11):2791–2798

    PubMed  Google Scholar 

  • Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, Soetaert W, Boerjan W (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:174. doi:10.3389/fpls.2013.00174

    PubMed Central  PubMed  Google Scholar 

  • Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verho R, Penttilä M, Richard P (2011) Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora. Appl Biochem Biotechnol 164(5):604–611. doi: 10.1007/s12010-011-9161-y

    CAS  PubMed  Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242. doi:10.1016/j.ymben.2009.04.001

    CAS  PubMed  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Li R, Lu D, Ma S, Yan Y, Li W (2009) A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J Microbiol Biotechnol 25(5):921–925. doi:10.1007/s11274-009-9960-2

    CAS  Google Scholar 

  • Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG, Min H, Jiang XH, Wu XC (2012) The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour Technol 108:203–210. doi:10.1016/j.biortech.2011.12.147

    PubMed  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303–1315. doi:10.1007/s00253-010-2707-z

    CAS  PubMed  Google Scholar 

  • Westhuizen TJ, Pretorius IS (1992) The value of electrophoretic fingerprinting and karyotyping in wine yeast breeding programmes. Antonie Van Leeuwenhoek 61(4):249–257. doi:10.1007/bf00713932

    PubMed  Google Scholar 

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19(2):63–102

    CAS  Google Scholar 

  • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881–4891. doi:10.1128/AEM.00177-07

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914. doi:10.1128/AEM.02268-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA 108(32):13212–13217. doi:10.1073/pnas.1103039108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11(3):299–306. doi:10.1111/j.1567-1364.2011.00719.x

    CAS  PubMed  Google Scholar 

  • Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388. doi: 10.1007/s00253-010-2784-z

    CAS  PubMed  Google Scholar 

  • Ykema A, Verbree EC, van Verseveld HW, Smit H (1986) Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures. Antonie Van Leeuwenhoek 52(6):491–506

    CAS  PubMed  Google Scholar 

  • Yu KO, Jung J, Kim SW, Park CH, Han SO (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109(1):110–115. doi:10.1002/bit.23311

    CAS  PubMed  Google Scholar 

  • Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO (2013) Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioeng 110(1):343–347. doi:10.1002/bit.24623

    CAS  PubMed  Google Scholar 

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140. doi:http://dx.doi.org/10.1016/j.biortech.2011.02.081

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783. doi:10.1016/j.copbio.2011.04.024

    CAS  PubMed  Google Scholar 

  • Zheng D-Q, Wang P-M, Chen J, Zhang K, Liu T-Z, Wu X-C, Li Y-D, Zhao Y-H (2012) Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genom 13(1):479

    CAS  Google Scholar 

  • Zheng Y, Yu C, Cheng YS, Zhang R, Jenkins B, VanderGheynst JS (2011) Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresour Technol 102(2):1489–1495. doi:10.1016/j.biortech.2010.09.105

    CAS  PubMed  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101(13):4992–5002. doi:10.1016/j.biortech.2009.11.007

    CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi:10.1038/ncomms2112

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the support for the biofuel-related research of my group from the MicroDrivE programme of the Swedish University of Agricultural Sciences, the Swedish Energy Authority (Energimyndigheten), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) and the Visby programme of the Swedish Institute. I wish to thank Mattias Carlsson for his advices during writing the manuscript and Dr Su-Lin Leong for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Passoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Passoth, V. (2014). Molecular Mechanisms in Yeast Carbon Metabolism: Bioethanol and Other Biofuels. In: Piškur, J., Compagno, C. (eds) Molecular Mechanisms in Yeast Carbon Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55013-3_9

Download citation

Publish with us

Policies and ethics