Skip to main content

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

Based on full-sky imaging polarimetric measurements, in this chapter we demonstrate that the celestial distribution of the angle of polarization (or E-vector direction) of skylight is a very robust pattern being qualitatively always the same under all possible sky conditions. Practically the only qualitative difference among clear, partly cloudy, overcast, foggy, smoky and tree-canopied skies occurs in the degree of linear polarization d: The higher the optical thickness of the non-clear atmosphere, the lower the d of skylight. We review here how well the Rayleigh model describes the E-vector pattern of clear and cloudy skies. We deal with the polarization patterns of foggy, partly cloudy, overcast, twilight, smoky and total-solar-eclipsed skies. We describe the possible influences of the changed polarization pattern of smoky and eclipsed skies on insect orientation. We consider the polarization of ‘water-skies’ above Arctic open waters and the polarization characteristics of fogbows. Finally, we deal with the change of skylight polarization due to the transmission through Snell’s window of the flat water surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sunlit fog means that the fog layer is illuminated by direct sunlight, because the sun is not occluded by clouds.

References

  • Able KP (1982) Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299:550–551

    Google Scholar 

  • Able KP, Able MA (1990) Ontogeny of migratory orientation in the savannah sparrow, Passerculus sandwichensis: mechanisms at sunset. Anim Behav 39:1189–1198

    Google Scholar 

  • Aldhous P (2004) Borneo is burning. Nature 432:144–146

    PubMed  CAS  Google Scholar 

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Google Scholar 

  • Ancel A, Kooyman GL, Ponganis PJ, Gendner JP, Lignon J, Mestre X, Huin N, Thorson PH, Robisson P, Le Maho Y (1992) Foraging behaviour of emperor penguins as a resource detector in winter and summer. Nature 360:336–339

    Google Scholar 

  • Baldavári L (2001) Change of honeybee behaviour in an apiary during the total solar eclipse on 11 August 1999. Állattani Közlemények 86:137–143 (in Hungarian)

    Google Scholar 

  • Barfod JHP (1967) Navigation. Kulturhistoriskt Lexikon Nordisk Medeltid 12:260–263

    Google Scholar 

  • Barta A, Horváth G (2004) Why is it advantageous to perceive the polarization of downwelling light under clouds and canopies in the UV? J Theor Biol 226:429–437

    PubMed  Google Scholar 

  • Barta A, Horváth G, Bernáth B, Meyer-Rochow VB (2003) Imaging polarimetry of the rainbow. Appl Opt 42:399–405

    PubMed  Google Scholar 

  • Bernáth B, Pomozi I, Gál J, Horváth G, Wehner R (2001) Skylight polarization during the total solar eclipse of 11 August 1999 and its possible biological implications. Állattani Közlemények 86:81–92 (in Hungarian)

    Google Scholar 

  • Berry MV, Dennis MR, Lee RL Jr (2004) Polarization singularities in the clear sky. New J Phys 6:162

    Google Scholar 

  • Binns AL (1971) Sun navigation in the Viking age, and the Canterbury portable sundial. Acta Archaeologica 42:23–34

    Google Scholar 

  • Born E, Wiig O, Thomassen J (1997) Seasonal and annual movements of radio-collared polar bears (Ursus maritimus) in northeast Greenland. J Mar Syst 10:67–77

    Google Scholar 

  • Bréon FM (2006) How do aerosols affect cloudiness and climate? Science 313:623–624

    PubMed  Google Scholar 

  • Brines ML (1980) Dynamic patterns of skylight polarization as clock and compass. J Theor Biol 86:507–512

    PubMed  CAS  Google Scholar 

  • Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91

    Google Scholar 

  • Britton W (1972) The Britton Viking sun-stone expedition. Nutrition Today 1972 (May/June):14–23

    Google Scholar 

  • Brown RGB, Nettleship DN (1981) The biological significance of polynyas to arctic colonial seabirds. In: I Stirling, H Cleator (eds) Polynyas in the Canadian Arctic. Can Wildl Serv Occas Pap 45:59–65

    Google Scholar 

  • Coulson KL (1971) On the solar radiation field in a polluted atmosphere. J Quant Spectrosc Radiat Transf 2:739–755

    Google Scholar 

  • Coulson KL (1988) Polarization and Intensity of Light in the Atmosphere. A. Deepak Publishing, Hampton, VA

    Google Scholar 

  • Cowley L (2011) Software IRIS ©, http://atoptics.co.uk

  • Cronin TW, Shashar N (2001) The linearly polarized light field in clear, tropical, marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J Exp Biol 204:2461–2467

    PubMed  CAS  Google Scholar 

  • Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Opt 45:5582–5589

    PubMed  Google Scholar 

  • Dandekar BS, Turtle JP (1971) Day sky brightness and polarization during the total solar eclipse of 7 March 1970. Appl Opt 10:1220–1224

    PubMed  CAS  Google Scholar 

  • Dave JV (1969) Scattering of visible light by large water spheres. Appl Opt 8:155–164

    PubMed  CAS  Google Scholar 

  • de Bary E, Bullrich K, Lorenz D (1961) Messungen der Himmelsstrahlung und deren Polarisationsgrad während der Sonnenfinsternis am 15.2.1961 in Viareggio (Italien). Geofisica Pura et Applicata 48:193–198

    Google Scholar 

  • Dennis MR (2007) A three-dimensional degree of polarization based on Rayleigh scattering. J Opt Soc Am A 24:2065–2069

    Google Scholar 

  • Forward RB, Waterman TH (1973) Evidence for e-vector and light intensity pattern discrimination by the teleost Demogenys. J Comp Physiol A 87:189–202

    Google Scholar 

  • Forward RB, Horch KW, Waterman TH (1972) Visual orientation at the water surface by the teleost Zenarchopterus. Biol Bull 143:112–126

    Google Scholar 

  • Freake MJ (1999) Evidence for orientation using the e-vector direction of polarized light in the sleepy lizard Tiliqua rugosa. J Exp Biol 202:1159–1166

    PubMed  Google Scholar 

  • Gál J, Horváth G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies. J Geophys Res D 106:22647–22653

    Google Scholar 

  • Gerharz R (1976) Appearance of the atmospheric scatter field during a solar eclipse. J Geophys 42:163–167

    Google Scholar 

  • Goddard SM, Forward RB (1989) The use of celestial cues in the offshore escape response of the shrimp Palaemonetes vulgaris. Mar Behav Physiol 16:11–18

    Google Scholar 

  • Goddard SM, Forward RB (1990) The decay and learning of an y axis orientation behavior: the offshore escape response of the shrimp Palaemonetes vulgaris (Say). J Exp Mar Biol Ecol 142:137–150

    Google Scholar 

  • Goddard SM, Forward RB (1991) The role of the underwater polarized light pattern, in sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491

    Google Scholar 

  • Greenler R (1980) Rainbows, halos, and glories. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Greiner B, Ribi WA, Warrant EJ (2004) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390

    PubMed  Google Scholar 

  • Groot C (1965) On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of lakes. Behaviour 14(suppl)(1):198

    Google Scholar 

  • Hannay JH (2004) Polarization of sky light from a canopy atmosphere. New J Phys 6:197

    Google Scholar 

  • Hannay JH (2007) Radiative transfer: exact Rayleigh scattering series and a formula for daylight. Proc R Soc A 463:2729–2751

    Google Scholar 

  • Hawryshyn CW (1992) Polarization vision in fish. Am Sci 80:164–175

    Google Scholar 

  • Hawryshyn CW, Mcfarland WN (1987) Cone photoreceptor mechanisms and the detection of polarized light in fish. J Comp Physiol A 160:459–465

    Google Scholar 

  • Hawryshyn CW, Arnold MG, Bowering D, Cole RL (1990) Spatial orientation of rainbow trout to plane-polarized light: the ontogeny of e-vector discrimination and spectral characteristics. J Comp Physiol A 166:565–574

    Google Scholar 

  • Hawryshyn CW, Moyer HD, Allison WT, Haimberger TJ, Mcfarland WN (2003) Multidimensional polarization sensitivity in damselfishes. J Comp Physiol A 189:213–220

    CAS  Google Scholar 

  • Hegedüs R, Åkesson S, Wehner R, Horváth G (2007a) Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies. Proc R Soc A 463:1081–1095

    Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007b) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356

    Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007c) Anomalous celestial polarization caused by forest fire smoke: why do some insects become visually disoriented under smoky skies? Appl Opt 46:2717–2726

    PubMed  Google Scholar 

  • Hegedüs R, Barta A, Bernáth B, Meyer-Rochow VB, Horváth G (2007d) Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Appl Opt 46:6019–6032

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007e) Polarization of “water-skies” above arctic open waters: how polynyas in the ice-cover can be visually detected from a distance. J Opt Soc Am A 24:132–138

    Google Scholar 

  • Hirche HJ, Baumann MEM, Kattner G, Gradinger R (1991) Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea. J Mar Syst 2:477–494

    Google Scholar 

  • Horváth G, Varjú D (1995) Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface. Vis Res 35(12):1651–1666

    PubMed  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Google Scholar 

  • Horváth G, Pomozi I, Gál J (2003) Neutral points of skylight polarization observed during the total eclipse on 11 August 1999. Appl Opt 42:465–475

    PubMed  Google Scholar 

  • Horváth G, Hegedüs R, Barta A, Farkas A, Åkesson S (2011) Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic. Appl Opt 50:F64–F71

    PubMed  Google Scholar 

  • Ivanoff A, Waterman TH (1958) Elliptical polarization of submarine illumination. J Mar Res 16:255–282

    Google Scholar 

  • Johnson EA, Miyanishi K (2000) Forest fires: behavior and ecological effect. Academic, New York

    Google Scholar 

  • Johnson DL, Naylor D, Scudder G (2005) Red sky in day, bugs go astray. Annual Meeting of the Canadian Association of Geographers, Western Division, Lethbridge, Alberta, Canada, 12 March 2005, Abstracts, p 145

    Google Scholar 

  • Kasischke ES, Stocks BJ (2000) Fire, climate change and carbon cycling in the boreal forest, Ecological studies series. Springer, Heidelberg

    Google Scholar 

  • Kirschfeld K, Lindauer M, Martin H (1975) Problems of menotactic orientation according to polarized light of the sky. Zeitschrift für Naturforschung 30c:88–90

    Google Scholar 

  • Kleerekoper H, Matis JH, Timms AM, Gensler P (1973) Locomotor response of the goldfish to polarized light and its e-vector. J Comp Physiol A 86:27–36

    Google Scholar 

  • Können GP (1985) Polarized light in nature. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Können GP (1987) Skylight polarization during a total solar eclipse: a quantitative model. J Opt Soc Am A 4:601–608

    Google Scholar 

  • Können GP, de Boer JH (1979) Polarized rainbow. Appl Opt 18:1961–1965

    PubMed  Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of polarized light by the homing pigeon, Columba livia. J Comp Physiol 89:83–92

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    PubMed  CAS  Google Scholar 

  • LaFay H (1970) The Vikings. Nat Geosci 137:492–541

    Google Scholar 

  • Lee RL Jr, Fraser AB (2001) The rainbow bridge: rainbows in art, myth, and science. Pennsylvania State University Press, Philadelphia, PA

    Google Scholar 

  • Lenggenhager K (1982) Ergänzungen zur Entstehung der Regenbogen, inneren Nebenbogen und Nebelbogen. Archiv für Meteorologie, Geophysik und Bioklimatologie A 31:147–156

    Google Scholar 

  • Lenggenhager K (1983) Erklärung der im Vergleich zum Regen- und Nebelbogen umgekehrten Teilpolarisation der Nebelglorien. Archiv für Meteorologie, Geophysik und Bioklimatologie A 32:165–172

    Google Scholar 

  • Lynch DK, Futterman SN (1991) Ulloa’s observation of the glory, fogbow, and an unidentified phenomenon. Appl Opt 30:3538–3541

    PubMed  CAS  Google Scholar 

  • Lynch DK, Schwartz P (1991) Rainbows and fogbows. Appl Opt 30:3415–3420

    PubMed  CAS  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford, UK

    Google Scholar 

  • McConnel JC (1890) The theory of fog-bows. Philos Mag (Series 5) 29:453–461

    Google Scholar 

  • Mcfarland WN (1986) Light in the sea—correlations with behaviors of fishes and invertebrates. Am Zool 26:389–401

    Google Scholar 

  • Mcfarland WN (1991) The visual world of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, New York, pp 16–37

    Google Scholar 

  • McFarland W, Wahl C, Suchanek T, McAlary F (1999) The behavior of animals around twilight with emphasis on coral reef communities. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds) Adaptive mechanisms in ecology of vision. Kluwer Academic, Dordrecht, pp 583–628

    Google Scholar 

  • McGrath WH (1991) The stars look down. Navigation News 3 (May/June 1991):14–15

    Google Scholar 

  • McRoy CP, Goering JJ (1976) Annual budget of primary production in the Bearing Sea. Mar Sci Commun 2:255–267

    Google Scholar 

  • Miller RE, Fastie WG (1972) Skylight intensity, polarization and airglow measurements during the total solar eclipse of 30 May 1965. J Atmos Terr Phys 34:1541–1546

    CAS  Google Scholar 

  • Minnaert M (1940) Light and color in the open air. G Bell and Sons, London

    Google Scholar 

  • Moore JG, Rao CRN (1966) Polarization of the daytime sky during the total solar eclipse of 30 May 1965. Ann Geophys 22:147–150

    Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc B 366:763–771

    Google Scholar 

  • Munk O (1970) On the occurrence and significance of horizontal band-shaped retinal areas in teleosts. Videnskabellae Meddelelser Danfra Naturhistorisk Forening 133:85–120

    Google Scholar 

  • Novales-Flamarique I, Browman HI (2001) Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415–2422

    Google Scholar 

  • Novales-Flamarique I, Hawryshyn CW (1997) Is the use of underwater polarized light by fish restricted to crepuscular time periods? Vis Res 37(8):975–989

    PubMed  CAS  Google Scholar 

  • Nussbaum A, Phillips RA (1982) Contemporary optics for scientist and engineers. Prentice Hall Inc., Englewood Cliffs, NJ, USA

    Google Scholar 

  • Parkyn DC, Hawryshyn CW (1993) Polarized light sensitivity in rainbow trout (Oncorhynchus mykiss): characterization from multiunit ganglion cell responses in the optic nerve fibers. J Comp Physiol A 172:493–500

    Google Scholar 

  • Phillips JB, Waldvogel JA (1982) Reflected light cues generate the short-term deflector-loft effect. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Heidelberg, pp 190–202

    Google Scholar 

  • Piltschikoff N (1906) Sur la polarization du ciel pendant les éclipses du soleil. Comptes Rendus Acad Sci Paris 142:1449

    Google Scholar 

  • Pomozi I, Gál J, Horváth G, Wehner R (2001a) Fine structure of the celestial polarization pattern and its temporal change during the total solar eclipse of 11 August 1999. Remote Sens Environ 76:181–201

    Google Scholar 

  • Pomozi I, Horváth G, Wehner R (2001b) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942

    PubMed  CAS  Google Scholar 

  • Ramskou T (1967) Solstenen. Skalk 2:16–17

    Google Scholar 

  • Ramskou T (1969) Solstenen—primitiv navigation I Norden for Kompasset. Rhodos, Kobenhavn

    Google Scholar 

  • Rao CRN, Takashima T, Moore JG (1972) Polarimetry of the daytime sky during solar eclipses. J Atmos Terr Phys 34:573–576

    Google Scholar 

  • Ritz DA (1991) Polarized-light responses in the shrimp Palaemonetes vulgaris (Say). J Exp Mar Biol Ecol 154:245–250

    Google Scholar 

  • Roslund C, Beckman C (1994) Disputing Viking navigation by polarized skylight. Appl Opt 33:4754–4755

    PubMed  CAS  Google Scholar 

  • Rossel S, Wehner R (1982) The bee’s map of the e-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rossel S, Wehner R, Lindauer M (1978) E-vector orientation in bees. J Comp Physiol A 125:1–12

    Google Scholar 

  • Sabbah S, Barta A, Gál J, Horváth G, Shashar N (2006) Experimental and theoretical study of skylight polarization transmitted through Snell’s window of a flat water surface. J Opt Soc Am A 23:1978–1988

    Google Scholar 

  • Schaefer BE (1997) Vikings and polarization sundials. Sky Telesc 1997(May):91–94

    Google Scholar 

  • Schmidt-Koenig K, Ganzhorn JU, Ranvaud R (1991) The sun compass. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 1–15

    Google Scholar 

  • Schnall U (1975) Navigation der Wikinger. Schriften des Deutschen Schiffahrtsmuseums 6:92–115

    Google Scholar 

  • Schumann TEW (1940) Theoretical aspects of the size distribution of fog particles. Q J Roy Meteorol Soc 66:195–208

    Google Scholar 

  • Schwind R (1999) Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’. J Exp Biol 202:3631–3635

    PubMed  Google Scholar 

  • Shashar N, Cronin TW, Wolff LB, Condon MA (1998) The polarization of light in a tropical rain forest. Biotropica 30:275–285

    Google Scholar 

  • Shashar N, Sabbah S, Cronin TW (2004) Transmission of linearly polarized light in sea water: implications for polarization signaling. J Exp Biol 207:3619–3628

    PubMed  Google Scholar 

  • Shaw GE (1975) Sky brightness and polarization during the 1973 African eclipse. Appl Opt 14:388–394

    PubMed  CAS  Google Scholar 

  • Sipőcz B, Hegedüs R, Kriska G, Horváth G (2008) Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry. Appl Opt 47:H1–H10

    PubMed  Google Scholar 

  • Stirling I (1980) The biological importance of polynyas in the Canadian Arctic. Arctic 33:303–315

    Google Scholar 

  • Stirling I (1997) The importance of polynyas, ice edges, and leads to marine mammals and birds. J Mar Syst 10:9–21

    Google Scholar 

  • Stirling I, Cleator H (eds) (1981) Polynyas in the Canadian Arctic. Occasional Paper—Canadian Wildlife Service 45, pp 1–70

    Google Scholar 

  • Stirling I, Andriashek D, Calvert W (1993) Habitat preferences of polar bears in the Western Canadian Arctic in late winter and spring. Pol Res 29:13–24

    Google Scholar 

  • Suhai B, Horváth G (2004) How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study. J Opt Soc Am A 21:1669–1676

    Google Scholar 

  • Szentkirályi F, Szalay L (2001) Influence of the total solar eclipse of 11 August 1999 on the behaviour and collecting activity of honeybees. Állattani Közlemények 86:115–136 (in Hungarian)

    Google Scholar 

  • Thirslund S (2001) Viking navigation: sun-compass guided Norsemen first to America. Gullanders Bogtrykkeri a-s, Skjern, Humlebaek, Denmark

    Google Scholar 

  • Tilzer M (1994) 125 Jahre Deutsche Polarforschung, 2nd edn. Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Timofeyeva VA (1969) Plane of vibrations of polarized light in turbid media. Izv Atmos Ocean Phys 5:1049–1057

    Google Scholar 

  • Timofeyeva VA (1970) The degree of polarization of light in turbid media. Izv Atmos Ocean Phys 6:513–522

    Google Scholar 

  • Tricker RAR (1970) Introduction to meteorological optics. Elsevier Publishing Co., New York

    Google Scholar 

  • Tyndall J (1884) Note on the white rainbow. Philos Mag (Series 5) 17:148–150

    Google Scholar 

  • Ugolini A, Castellini C, Tiribilli B (2004) The orientation of the sandhopper Talitrus saltator during a partial solar eclipse. J Comp Physiol A 190:855–859

    CAS  Google Scholar 

  • van der Glas HW (1977) Models for unambiguous E-vector navigation in the bee. J Comp Physiol A 113:129–159

    Google Scholar 

  • von Bullrich K (1963) Der Beginn der Nebelbildung und seine optische Auswirkung. Z Angew Math Phys 14:434–441

    CAS  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MA, USA

    Google Scholar 

  • Walker J (1978) More about polarizers and how to use them, particularly for studying polarized sky light. Sci Am 238(1):132–136

    Google Scholar 

  • Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo W (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318

    PubMed  CAS  Google Scholar 

  • Waterman TH (1954) Polarization patterns in submarine illumination. Science 120:927–932

    PubMed  CAS  Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates B: invertebrates visual centers and behavior I. Berlin, Springer, pp 281–469

    Google Scholar 

  • Wehner R (1976) Polarized-light navigation by insects. Sci Am 235(7):106–115

    PubMed  CAS  Google Scholar 

  • Wehner R (1983) Celestial and terrestrial navigation: human strategies—insect strategies. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Heidelberg, pp 366–381

    Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298

    Google Scholar 

  • Wehner R (1989) The hymenopteran skylight compass: matched filtering and parallel coding. J Exp Biol 146:63–85

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritten in der Zoologie 39:103–143

    Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185

    Google Scholar 

  • Wehner R (2001) Polarization vision—a uniform sensory capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Wehner R, Rossel S (1985) The bee’s celestial compass—a case study in behavioural neurobiology. Fortschritten in der Zoologie 31:11–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Horváth .

Editor information

Editors and Affiliations

1 Electronic Supplementray Material

Supplementary figures and 13 video clips are available in the online version of this chapter. The videos can also be accessed at http://www.springerimages.com/videos/ <ISBN print>. (GIF 7709 kb)

71484_2_En_18_MOESM17_ESM.zip

Colour picture of skylight and earthlight photographed from a hot air balloon at a height of 3,500 m on 25 June 2001 by a 180° field-of-view imaging polarimeter at sunrise. The 180° field-of-view circular sky and earth pictures are displayed on the celestial and terrestrial hemispheres, respectively. The two hemispheres compose a rotating sphere that demonstrates how an observer sees the scenery when looking around (copyright holders: Dr. Balázs Bernáth, Bence Suhai and Dr. Gábor Horváth) (GIF 7709 kb)

71484_2_En_18_MOESM18_ESM.zip

Degree of linear polarization p of skylight and earthlight measured by 180° field-of-view imaging polarimetry in the green (550 nm) spectral range from a hot air balloon at a height of 3,500 m on 25 June 2001 at sunrise. The 180° field-of-view circular p-patterns of skylight and earthlight are displayed on the celestial and terrestrial hemispheres, respectively. The two hemispheres compose a rotating sphere that demonstrates how a polarization-sensitive observer sees the scenery when looking around. The Arago/fourth and the Babinet/Brewster neutral points of atmospheric polarization are above/below the anti-sun and sun, respectively (copyright holders: Dr. Balázs Bernáth, Bence Suhai and Dr. Gábor Horváth) (GIF 9709 kb)

71484_2_En_18_MOESM19_ESM.zip

Angle of polarization α of skylight and earthlight measured by 180° field-of-view imaging polarimetry in the green (550 nm) spectral range from a hot air balloon at a height of 3,500 m on 25 June 2001 at sunrise. The 180° field-of-view circular α-patterns of skylight and earthlight are displayed on the celestial and terrestrial hemispheres, respectively. The two hemispheres compose a rotating sphere that demonstrates how a polarization-sensitive observer sees the scenery when looking around. The Arago/fourth and the Babinet/Brewster neutral points of atmospheric polarization are above/below the anti-sun and sun, respectively (copyright holders: Dr. Balázs Bernáth, Bence Suhai and Dr. Gábor Horváth) (GIF 10553 kb)

71484_2_En_18_MOESM20_ESM.zip

Pattern of the degree δ (left) and angle α (clockwise from the local meridian; right) of linear polarization of skylight calculated on the basis of the single-scattered Rayleigh model as a function of time (sun position) on 21 June 2000 at Maharés (Tunisia). The sun position is marked by a black dot. In the α-pattern the local direction of polarization of skylight is shown by a black bar. East and West are transposed in the compass rose, because we are looking upward at the sky-dome rather than downward at a map (copyright holders: Dr. József Gál and Dr. Gábor Horváth) (GIF 8981 kb)

71484_2_En_18_MOESM21_ESM.zip

Patterns of the intensity I (upper row), degree d (middle row) and angle α (clockwise from the local meridian, lower row) of linear polarization of light from a clear sky during 24 h as a function of time at Sodankylä (Finland) in June 1999 when the sun did not set below the horizon. The patterns were measured by 180° field-of-view imaging polarimetry in the red (650 nm, left column), green (550 nm, middle column) and blue (450 nm, right column) parts of the spectrum. The higher the d-value, the darker the grey shade (white: p = 0 %, black: p = 100 %). The centre and perimeter of the circular patterns are the zenith and the horizon, respectively. The sun was occluded by a small disc. One of the radial bars is the wire of the sun occulter rotating together with the solar meridian. The other, constant, bar is the metal rod of a meteorological tower. In the α-patterns the overexposed sky regions are shaded black (copyright holders: Dr. József Gál and Dr. Gábor Horváth) (GIF 21545 kb)

71484_2_En_18_MOESM22_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at Kecel (Hungary) on 11 August 1999 at 12:51 (=local summer time = UTC + 2 h) prior to the totality of a solar eclipse. The 180° field-of-view circular patterns are displayed on a rotating hemisphere. The sun is occluded by a small disc held by a wire. The overexposed sky regions are red and black in the d- and α-patterns, respectively (copyright holders: Bence Suhai, Dr. József Gál, Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14278 kb)

71484_2_En_18_MOESM23_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at Kecel (Hungary) on 11 August 1999 at 12:52 (=local summer time = UTC + 2 h) during the totality of a solar eclipse. The 180° field-of-view circular patterns are displayed on a rotating hemisphere. In the d-patterns the weakly polarized or unpolarized (neutral) points of the sky and their surroundings are displayed by blue–green–yellow colours (copyright holders: Bence Suhai, Dr. József Gál, Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14278 kb)

71484_2_En_18_MOESM24_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at Kecel (Hungary) on 11 August 1999 at 12:52 (=local summer time = UTC + 2 h) during the totality of a solar eclipse. The 180° field-of-view circular patterns are displayed on a rotating hemisphere. The overexposed sky regions are red and black in the d- and α-patterns, respectively (copyright holders: Bence Suhai, Dr. József Gál, Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14278 kb)

71484_2_En_18_MOESM25_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the normal, partly cloudy sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at Kecel (Hungary) on 12 August 1999 (subsequent day of the total solar eclipse of 11 August 1999) at 12:52 (=local summer time = UTC + 2 h). The 180° field-of-view circular patterns are displayed on a rotating hemisphere. The clouds are red and black in the d- and α-patterns, respectively. The sun is occluded by a small disc held by a wire (copyright holders: Bence Suhai, Dr. József Gál, Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14278 kb)

71484_2_En_18_MOESM26_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the normal, clear sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum in Tunisia on 26 August 1999 at 12:00 (=local summer time = UTC + 1 h) for the same zenith angle of 32° of the sun as that during the totality of the solar eclipse on 11 August 1999. The 180° field-of-view circular patterns are displayed on a rotating hemisphere. The overexposed sky regions are red and black in the d- and α-patterns, respectively. The sun is occluded by a small disc held by a wire (copyright holders: Bence Suhai, Dr. József Gál, Dr. István Pomozi and Dr. Gábor Horváth) (GIF 14278 kb)

71484_2_En_18_MOESM27_ESM.zip

Colour picture and the patterns of the degree d and angle α of linear polarization of the sky measured by full-sky imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at Kecel (Hungary) on 11 August 1999 from the pre-eclipse (11:29−12:51 = local summer time = UTC + 2 h) through the totality (12:52−12:53) to the post-eclipse (13:01−14:13) during the total solar eclipse. In the d-patterns the over- and underexposed sky regions are red and blue, respectively. In the α-patterns the over- or underexposed sky regions are black. During the pre- and post-eclipse the sun is occluded by a small disc held by a wire (copyright holders: Dr. István Pomozi, Dr. József Gál and Dr. Gábor Horváth) (GIF 9358 kb)

71484_2_En_18_MOESM28_ESM.zip

180° field-of-view (full-sky) colour photographs of the sky taken at Kunfehértó (Hungary) on 11 August 1999 from the pre-eclipse through the totality to the post-eclipse during the total solar eclipse (local summer time = UTC + 2 h). East and West are transposed in the compass rose, because we are looking upward at the sky-dome rather than downward at a map (copyright holders: Dr. Balázs Bernáth, Bence Suhai, Dr. József Gál and Dr. Gábor Horváth) (GIF 18085 kb)

71484_2_En_18_MOESM29_ESM.zip

Patterns of the intensity I (upper row), degree d (middle row) and angle α (clockwise from the vertical, lower row) of linear polarization of light from the solar corona measured by imaging polarimetry in the red (650 nm, left column), green (550 nm, middle column) and blue (450 nm, right column) parts of the spectrum at Kecel (Hungary) on 11 August 1999 during the totality of the solar eclipse. The higher the d-value, the darker the grey shade (white: p = 0 %, black: p = 100 %). In the d-patterns the over- and underexposed sky regions are red and blue, respectively. In the α-patterns the over- or underexposed sky regions are black (copyright holders: Dr. István Pomozi and Dr. Gábor Horváth) (GIF 5174 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horváth, G., Barta, A., Hegedüs, R. (2014). Polarization of the Sky. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_18

Download citation

Publish with us

Policies and ethics