Skip to main content

Tutorial on Neural Field Theory

  • Chapter
  • First Online:
Neural Fields

Abstract

The tools of dynamical systems theory are having an increasing impact on our understanding of patterns of neural activity. In this tutorial chapter we describe how to build tractable tissue level models that maintain a strong link with biophysical reality. These models typically take the form of nonlinear integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of spatiotemporal patterns, based around natural extensions of those used for local differential equation models. We present an overview of these techniques, covering Turing instability analysis, amplitude equations , and travelling waves. Finally we address inverse problems for neural fields to train synaptic weight kernels from prescribed field dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L.F., Fahri, E., Gutmann, S.: The path integral for dendritic trees. Biol. Cybern. 66, 49–60 (1991)

    Article  MATH  Google Scholar 

  2. Amari, S.: Homogeneous nets of neuron-like elements. Biol. Cybern. 17, 211–220 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beim Graben, P., Pinotsis, D., Saddy, D., Potthast, R.: Language processing with dynamic fields. Cogn. Neurodyn. 2(2), 79–88 (2008)

    Article  Google Scholar 

  5. Beim Graben, P., Potthast, R.: Inverse problems in dynamic cognitive modeling. Chaos 19(1), 015103 (2009)

    Article  MathSciNet  Google Scholar 

  6. Beim Graben, P., Potthast, R.: A dynamic field account to language-related brain potentials. In: Rabinovich, M., et al. (eds.) Principles of Brain Dynamics: Global State Interactions. MIT, Cambridge (2012)

    Google Scholar 

  7. Ben-Yishai, R., Bar-Or, L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995)

    Article  Google Scholar 

  8. Berger, H.: Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie 87, 527–570 (1929)

    Article  Google Scholar 

  9. Beurle, R.L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. Lond. B 240, 55–94 (1956)

    Article  Google Scholar 

  10. Bojak, I., Liley, D.T.J.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041,902 (2005)

    Google Scholar 

  11. Brackley, C.A., Turner, M.S.: Random fluctuations of the firing rate function in a continuum neural field model. Phys. Rev. E 75, 041,913 (2007)

    Google Scholar 

  12. Bressloff, P.C.: New mechanism for neural pattern formation. Phys. Rev. Lett. 76, 4644–4647 (1996)

    Article  Google Scholar 

  13. Bressloff, P.C.: Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D 155, 83–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45, 033,001 (2012)

    Google Scholar 

  15. Bressloff, P.C., Coombes, S.: Physics of the extended neuron. Int. J. Mod. Phys. B 11, 2343–2392 (1997)

    Article  Google Scholar 

  16. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. B 40, 299–330 (2001)

    Article  Google Scholar 

  17. Bressloff, P.C., Souza, B.D.: Neural pattern formation in networks with dendritic structure. Phys. D 115, 124–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93. Springer, Berlin (1998)

    Google Scholar 

  19. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Coombes, S.: Large-scale neural dynamics: simple and complex. NeuroImage 52, 731–739 (2010)

    Article  Google Scholar 

  21. Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys. D 178, 219–241 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Coombes, S., Owen, M.R.: Evans functions for integral neural field equations with Heaviside firing rate function. SIAM J. Appl. Dyn. Syst. 34, 574–600 (2004)

    Article  MathSciNet  Google Scholar 

  23. Coombes, S., Schmidt, H.: Neural fields with sigmoidal firing rates: approximate solutions. Discret. Contin. Dyn. Syst. Ser. A 28, 1369–1379 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Coombes, S., Schmidt, H., Bojak, I.: Interface dynamics in planar neural field models. J. Math. Neurosci. 2(9), 1–27 (2012)

    MathSciNet  Google Scholar 

  25. Coombes, S., Timofeeva, Y., Svensson, C.M., Lord, G.J., Josic, K., Cox, S.J., Colbert, C.M.: Branching dendrites with resonant membrane: a “sum-over-trips” approach. Biol. Cybern. 97, 137–149 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Coombes, S., Venkov, N.A., Shiau, L., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007)

    Article  MathSciNet  Google Scholar 

  27. da Silva, F.L., Rotterdam, A.V.: Biophysical aspects of EEG and Magnetoencephalogram generation. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, pp. 107–126. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  28. Daunizeau, J., Kiebel, S.J., Friston, K.J.: Dynamic causal modelling of distributed electromagnetic responses. NeuroImage 47, 590–601 (2009)

    Article  Google Scholar 

  29. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and its Applications, vol. 375. Kluwer, Dordrecht (1996)

    Google Scholar 

  30. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural Eng. 3, R36–R54 (2006)

    Article  Google Scholar 

  31. Ermentrout, B.: Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. Ser. A 434, 413–417 (1991)

    MATH  MathSciNet  Google Scholar 

  32. Ermentrout, G.B.: Neural nets as spatio-temporal pattern forming systems. Rep. Prog. Phys. 61, 353–430 (1998)

    Article  Google Scholar 

  33. Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137–150 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ermentrout, G.B., McLeod, J.B.: Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinb. 123A, 461–478 (1993)

    Article  MathSciNet  Google Scholar 

  35. Evans, J.: Nerve axon equations: IV the stable and unstable impulse. Indiana Univ. Math. J. 24, 1169–1190 (1975)

    Article  MATH  Google Scholar 

  36. Faugeras, O., Grimbert, F., Slotine, J.J.: Absolute stability and complete synchronization in a class of neural fields models. SIAM J. Appl. Math. 69, 205–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Folias, S.E., Bressloff, P.C.: Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst. 3, 378–407 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Folias, S.E., Bressloff, P.C.: Breathers in two-dimensional neural media. Phys. Rev. Lett. 95(1–4), 208,107 (2005)

    Google Scholar 

  39. Geise, M.A.: Neural Field Theory for Motion Perception. Kluwer, Norwell (1999)

    Book  Google Scholar 

  40. Griffith, J.S.: A field theory of neural nets: I: derivation of field equations. Bull. Math. Biophys. 25, 111–120 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  41. Griffith, J.S.: A field theory of neural nets: II: properties of field equations. Bull. Math. Biophys. 27, 187–195 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  42. Griffith, J.S.: A View of the Brain. Oxford University Press, Oxford (1967)

    Google Scholar 

  43. Griffith, J.S.: Mathematical Neurobiology. Academic, London/New York (1971)

    MATH  Google Scholar 

  44. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  45. Haken, H.: Principles of Brain Functioning. Springer Series in Synergetics, vol. 67. Springer, Berlin (1996)

    Google Scholar 

  46. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949). Partly reprinted in Anderson, J.A., Rosenfeld, E., pp. 45ff. (1988)

    Google Scholar 

  47. Hoyle, R.: Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  48. Hutt, A.: Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay. Phys. Rev. E 60(1–4), 052,902 (2004)

    Google Scholar 

  49. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)

    Article  Google Scholar 

  50. Jirsa, V.K., Haken, H.: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys. D 99, 503–526 (1997)

    Article  MATH  Google Scholar 

  51. Jirsa, V.K.V., Jantzen, K.J., Fuchs, A., Kelso, J.A.S.: Neural field dynamics on the folded three-dimensional cortical sheet and its forward EEG and MEG. In: Information Processing in Medical Imaging, pp. 286–299. Springer, Berlin (2001)

    Google Scholar 

  52. Jirsa, V.K., Jantzen, K.J., Fuchs, A., Kelso, J.A.S.: Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans. Med. Imaging 21(5), 493–504 (2002)

    Article  Google Scholar 

  53. Kelso, J.A.S., Bressler, S.L., Buchanan, S., Deguzman, G.C., Ding, M., Fuchs, A., Holroyd, T.: A phase-transition in human brain and behaviour. Phys.Lett. A 169, 134–144 (1992)

    Article  Google Scholar 

  54. Kilpatrick, Z.P., Bressloff, P.C.: Binocular rivalry in a competitive neural network with synaptic depression. SIAM J. Appl. Dyn. Syst. 9, 1303–1347 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kilpatrick, Z.P., Bressloff, P.C.: Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Phys. D 239, 547–560 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Kilpatrick, Z.P., Bressloff, P.C.: Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J. Comput. Neurosci. 28, 193–209 (2010)

    Article  MathSciNet  Google Scholar 

  57. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120. Springer, New York (1996)

    Google Scholar 

  58. Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 7, 303–318 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  60. Laing, C.R.: Spiral waves in nonlocal equations. SIAM J. Appl. Dyn. Syst. 4, 588–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. Laing, C.R., Troy, W.C.: PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst. 2, 487–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. Laing, C.R., Troy, W.C.: Two bump solutions of Amari-type models of working memory. Phys. D 178, 190–218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math. 63, 62–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  64. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electrocortical activity. Netw. Comput. Neural Syst. 13, 67–113 (2002)

    Article  MATH  Google Scholar 

  65. Liley, D.T.J., Foster, B.L., Bojak, I.: A mesoscopic modelling approach to anaesthetic action on brain electrical activity. In: Sleep and Anesthesia, pp. 139–166. Springer, New York (2011)

    Google Scholar 

  66. Minsky, M., Papert, S.: Perceptrons. MIT, Cambridge (1969). Partly reprinted in Anderson, J.A., Rosenfeld, E., pp. 161ff (1988)

    Google Scholar 

  67. Nunez, P.L.: The brain wave equation: a model for the EEG. Math. Biosci. 21, 279–297 (1974)

    Article  MATH  Google Scholar 

  68. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)

    Google Scholar 

  69. Oleynik, A., Posnov, A., Wyller, J.: Iterative schemes for bump solutions in a neural field model. J. Differ. Equ. Dyn. Syst. doi:10.1007/s12591-013-0191-5 (2013)

    Google Scholar 

  70. Owen, M.R., Laing, C.R., Coombes, S.: Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J. Phys. 9, 378 (2007)

    Article  Google Scholar 

  71. Pettersen, K.H., Einevoll, G.T.: Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys. J. 94, 784–802 (2008)

    Article  Google Scholar 

  72. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulses. SIAM J. Appl. Math. 62, 206–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  73. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math. 62, 226–243 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  74. Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC Research Notes in Mathematics, vol. 427. Chapman & Hall/CRC, Boca Raton (2001)

    Google Scholar 

  75. Potthast, R., Beim Graben, P.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  76. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), e1000,072 (2008)

    Google Scholar 

  77. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021,903 (2001)

    Google Scholar 

  78. Rule, M., Stoffregen, M., Ermentrout, B.: A model for the origin and properties of flicker-induced geometric phosphenes. PLoS Comput. Biol. 7(9), e1002,158 (2011)

    Google Scholar 

  79. Sandstede, B.: Stability of travelling waves. In: Handbook of Dynamical Systems II, pp. 983–1055. Elsevier, Amsterdam (2002)

    Google Scholar 

  80. Schmidt, H., Hutt, A., Schimansky-Geier, L.: Wave fronts in inhomogeneous neural field models. Phys. D 238, 1101–1112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  81. Schöner, G., Dineva, E.: Dynamic instabilities as mechanisms for emergence. Dev. Sci. 10, 69–74 (2007)

    Article  Google Scholar 

  82. Segev, I., Rinzel, J., Shepherd, G.M. (eds.): The theoretical foundations of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT, Cambridge (1995)

    Google Scholar 

  83. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60, 7299–7311 (1999)

    Article  Google Scholar 

  84. Tass, P.: Cortical pattern formation during visual hallucinations. J. Biol. Phys. 21, 177–210 (1995)

    Article  Google Scholar 

  85. Taylor, J.G.: Neural ‘bubble’ dynamics in two dimensions: foundations. Biol. Cybern. 80, 393–409 (1999)

    Article  MATH  Google Scholar 

  86. Tuckwell, H.C.: Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure, vol. 1. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  87. Venkov, N.A., Coombes, S., Matthews, P.C.: Dynamic instabilities in scalar neural field equations with space-dependent delays. Phys. D 232, 1–15 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  88. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  89. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

SC would like to thank Ruth Smith for a careful reading of the material in this chapter. PbG gratefully acknowledges support from a DFG Heisenberg fellowship (GR 3711/1-2). The authors also thank EPSRC and the Centre for Cognitive Neuroscience and Neurodynamics (CINN) of the University of Reading, UK, for supporting the discussion on this tutorial by funding the 2nd International Conference on Neural Field Theory in April 2012 in Reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Coombes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coombes, S., beim Graben, P., Potthast, R. (2014). Tutorial on Neural Field Theory. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_1

Download citation

Publish with us

Policies and ethics