Skip to main content

Satellite-to-Satellite Tracking (Low-Low/High-Low SST)

  • Reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

This contribution reviews the mathematical ideas behind the most frequently used techniques for the processing of satellite-to-satellite tracking data. Its emphasis is on the model part rather than on all necessary technicalities in data preprocessing and numerical implementation. The main outcomes of these data-processing strategies, when applied to data of the satellite missions CHAMP and GRACE, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoni M (2012) Nichtlineare Optimierung regionaler Graviationsfeldmodelle aus SST Daten. PhD thesis, Universität Stuttgart

    Google Scholar 

  • Badura T, Sakulin C, Gruber T, Klostius R (2006) Derivation of the CHAMP-only gravity field model TUG-CHAMP04 applying the energy integral approach. Stud Geophys Geod 50:57–74

    Article  Google Scholar 

  • Ballani L (1988) Partielle Ableitungen und Variationsgleichungen zur Modellierung von Satellitenbahnen und Parameterbestimmung. Vermessungstechnik 36:192–194

    Google Scholar 

  • Bettadpur S (2012) Level-2 gravity field product user handbook rev. 3.0, May 29. ftp://podaac-ftp.jpl.nasa.gov/GeodeticsGravity/grace/L1B/JPL/RL01/docs/L2-UserHandbook_v3.0.pdf

  • Beutler G, Jäggi A, Mervart L, Meyer U (2010a) The celestial mechanics approach: theoretical foundations. J Geodesy 84:65–624

    Article  Google Scholar 

  • Beutler G, Jäggi A, Mervart L, Meyer U (2010b) The celestial mechanics approach: application to data of the GRACE mission. J Geodesy 84:661–681

    Article  Google Scholar 

  • Bjerhammar A (1976) On the energy integral for satellites. Technical report, Report of the Royal Institute of Technology, Stockholm

    Google Scholar 

  • Blaha G (1992) Refinement of the satellite-to-satellite line-of-sight model in residual gravity field. Manuscr Geod 17:321–333

    Google Scholar 

  • Chao BF, Gross RS (1987) Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes. J R Astron Soc 91:569–596

    Article  Google Scholar 

  • Colombo O (1984) Global mapping of gravity with two satellites. Technical report vol 7 Nr 3, Netherlands Geodetic Commission

    Google Scholar 

  • Eicker A (2012) Gravity field Refinement by radial basis functions from in-situ satellite data. Technical report, DGK Reihe C, Bd. 676

    Google Scholar 

  • Fengler MJ, Freeden W, Kohlhaas A, Michel V, Peters T (2007) Wavelet modeling of regional variations of the Earth’s gravitational potential observed by GRACE. J Geodesy 81:5–15

    Article  MATH  Google Scholar 

  • Gerlach CL, Földvary L, Švehla D, Gruber T, Wermut M, Sneeuw N, Frommknecht B, Oberhofer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett, doi:10.1029/2003GLO18025

    Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistic stratified Earth and further analysis of post-glacial rebound. Geophys J Int 120:287–311

    Article  Google Scholar 

  • Han S-C (2004) Efficient determination of global gravity field from satellite-to-satellite tracking mission. Celest Mech Dyn Astron 88:69–102

    Article  MATH  Google Scholar 

  • Heß D, Keller W (1999) Gradiometrie mit GRACE. Z Vermess 124:137–144

    Google Scholar 

  • ICGEM. http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html, 2014

  • Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75:85–101

    Article  MATH  Google Scholar 

  • Kaula WM (2000) Theory of satellite geodesy. Applications of satellites to geodesy. Dover, New York

    MATH  Google Scholar 

  • Keller W, Sharifi MA (2005) Satellite gradiometry using a satellite pair. J Geodesy 78:544–557

    Article  Google Scholar 

  • Klees R, Liu X, Wittwer T, Gunter BC, Revtona EA, Tenzer R, Ditmar P, Winsemius HC, Savanije HHG (2008) A comparison of global and regional GRACE models for land hydrology. Surv Geophys 29:335–359

    Article  Google Scholar 

  • Kostelec PJ, Rockmore DN (2008) FFTs on the rotation group. J Fourier Anal Appl 14:145–179

    Article  MathSciNet  MATH  Google Scholar 

  • Kusche J, Schmidt R, Petrovic S, Rietbroeck R (2009) Decorrelated GRACE time-variable gravity field solutions by GFZ, and their validation using a hydrological model. J Geodesy 83:903–913

    Article  Google Scholar 

  • Levenberg KA (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    MathSciNet  MATH  Google Scholar 

  • Luthcke SB, Arendt AA, Rowlands DD, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascons solutions. J Glaciol 54:767–777

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–443

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer-Gürr T (2012) Gravitationsfeldbestimmung ausn der Analyse kurzer bahnbögen am eispiel der Satellitenmissionen CHAMP und GRACE. Technical report, DGK Reihe C, Bd. 675

    Google Scholar 

  • Mayer-Gürr T, Eicker A, Ilk K-H (2007) ITG-Grace02s: a GRACE gravity field derived from range measurements of short arcs. In: Gravity field of the Earth, proceedings of the 1st international symposium of the international gravity field service (IGFS), Istanbul

    Google Scholar 

  • Mayer-Gürr T, Ilk H, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J Geodesy 78:462–480

    Article  MATH  Google Scholar 

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-grace2010 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010

  • Muller PM, Sjogren WL (1968) Mascons: lunar mass concentrations. Science 161:680–684

    Article  Google Scholar 

  • O’Keefe JA (1957) An application of Jacobi’s integral to the motion of an Earth satellite. Astron J 62:265–266

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010) (IERS technical note 36). Technical report, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Reigber C (1969) Zur Bestimmung des Gravitationsfeldes der Erde aus Satellitenbeobachtungen. Technical report, DGK Reihe C, Bd. 137

    Google Scholar 

  • Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer K-H, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Perosanz F (2004) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP – results from three years in orbit. Springer, Berlin, pp 25–30

    Google Scholar 

  • Reigber C, Lühr H, Grunwald L, Förste C, König R (2006) CHAMP mission 5 years in orbit. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Reubelt T (2009) Harmonische Gravitationsfeldanalyse aus GPS-vermessenen kinematischen Bahnen niedrig fliegender Satelliten vom Typ CHAMP, GRACE, GOCE mit einem hochauflösenden Beschleunigungsansatz. Technical report, DGK Reihe C, Bd. 632

    Google Scholar 

  • Reubelt T, Austen G, Grafarend EW (2003) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geodesy 77:257–278

    MATH  Google Scholar 

  • Rowlands DD, Luthcke SB, McCarthy JJ, Klosko SM, Chinn DS, Lemoine FG, Boy J-P, Sabaka TS (2010) Global mass-flux solutions from grace: a comparison of parameter estimation strategies – mass concentrations versus Stokes coefficients. J Geophys Res 115:B01403

    Google Scholar 

  • Rummel R (2003) How to climb the gravity wall. Space Sci Rev 108:1–14

    Article  Google Scholar 

  • Schmidt M, Han S-C, Kusche J, Sanchez L, Shum CK (2006) Regional high-resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. Geophys Res Lett 33:L08403

    Google Scholar 

  • Schneider M (1968) A general method of orbit determination. Technical report, Library Translations, Aircraft Establishment, Ministry of Technology, Farnborough

    Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Technical report, DGK Reihe C, Bd. 527

    Google Scholar 

  • Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geodesy 77:207–216

    Article  MATH  Google Scholar 

  • Weisstein E Wolfram mathworld. http://www.mathworld.wolfram.com, 2014

  • Wolff M (1969) Direct measurements of the Earth’s gravitational field using a satellite pair. J Geophys Res 74:5295–5300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Keller, W. (2015). Satellite-to-Satellite Tracking (Low-Low/High-Low SST). In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_56

Download citation

Publish with us

Policies and ethics