Skip to main content

Root Exudation: The Role of Secondary Metabolites, Their Localisation in Roots and Transport into the Rhizosphere

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

Root exudates contain numerous biologically active low molecular weight secondary metabolites that are produced by plants. Due to their physical and biochemical properties, they are able to interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants and animals. We present specific examples of two families of bioactive secondary plant products which have been well documented as allelochemicals and discuss their production and transport in the plants which produce them and their respective roles in the rhizosphere. We focus on flavonoids which play important roles in the transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral and anticancer activities. Flavonoids are transported within and between plant tissues and cells by specific transport proteins or transporters and are released into the rhizosphere by roots where they are involved in numerous interactions including allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids and other bioactive secondary metabolites are found in soil solutions and the rhizosphere. We describe their activity and fate in the soil rhizosphere in selected examples involving legumes. Long-chain hydroquinones, in contrast, are lipophilic molecules that are released by passive exudation from living Sorghum spp. root hairs and are involved in allelopathic interactions and in chemical signalling causing stimulation of germination by Striga spp. They are also thought to be involved in nematicidal activity associated with Sorghum haplotypes and are antibacterial to certain soil bacteria. Hydroquinones including sorgoleone are released continuously through pores in the tips of root hairs where they bind to soil particles and organic matter. Once exuded, sorgoleone and its metabolites remain bioactive in the rhizosphere for several days after introduction to living soils. We also discuss the potential for future research to further elucidate the role of secondary metabolites and their fate in the soil rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci 196:67–76

    CAS  PubMed  Google Scholar 

  • Aguilar JMM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH (1988) Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 134:2741–2746

    Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant-Microbe Interact 15:334–340

    CAS  PubMed  Google Scholar 

  • Akiyama K, Tanigawa F, Kashihara T, Hayashi H (2010) Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871

    CAS  PubMed  Google Scholar 

  • Armero J, Requejo R, Jorrin J, Lopez-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 39:785–795

    CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baerson SR, Schroder J, Cook D, Rimando AM, Pan Z, Dayan FE, Noonan BP, Duke SO (2010) Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family? Plant Signal Behav 5:1286–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  • Baldridge GD, O’Neill NR, Samac DA (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38:999–1010

    CAS  PubMed  Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–308

    CAS  Google Scholar 

  • Bayliss C, Canny MJ, McCully ME (1997) Retention in situ and spectral analysis of fluorescent vacuole components in sections of plant tissue. Biotech Histochem 72:123–128

    CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourne A (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324:746–748

    CAS  PubMed  Google Scholar 

  • Berhow MA, Vaughn SR (1999) Higher plant flavonoids: biosynthesis and chemical ecology. In: Dakshini IKMM, Foy CL (eds) Principals and practices in plant ecology-allelochemical interactions. CRC, Boca Raton, FL, pp 423–438

    Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L).16. Antifungal activity of medicarpin and its biosynthetic precursors – implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41:333–349

    CAS  Google Scholar 

  • Brigham LA, Woo HH, Hawes MC (1995) Root border cells as tools in plant cell studies. Methods Cell Biol 49:377–387

    CAS  PubMed  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    CAS  PubMed  Google Scholar 

  • Callaway RM, Aschehoug CA (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    CAS  PubMed  Google Scholar 

  • Carlsen SCK, Pedersen HA, Spliid NH, Fomsgaard IS (2012) Fate in soil of flavonoids released from white clover (Trifolium repens L.). Appl Environ Soil Sci 2012:1–10

    Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    CAS  Google Scholar 

  • Chang M, Netzly DH, Butler LG, Lynn DG (1996) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 106:7858–7860

    Google Scholar 

  • Cook D, Rimando AM, Clemente TE, Schroder J, Dayan FE, Nanayakkara NPD, Pan Z, Noonan BP, Fishbein M, Duke SO, Baerson SR (2010) Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell 22:867–887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. In: Callow JA (ed) Advances in botanical research incorporating advances in plant pathology, vol 41., pp 1–62

    Google Scholar 

  • Coronado C, Zuanazzi JAS, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi A, Ratet P (1995) Medicago sativa root flavonoid production is nitrogen regulated. Plant Physiol 108:533–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove D, Undersander D (2003) Seeding alfalfa fields back into alfalfa extension publication. Focus on forage. University of Wisconsin, Madison, WI, pp 1–2

    Google Scholar 

  • Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. Sp dianthi pathosystem. J Phytopathol 153:65–67

    CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107

    CAS  PubMed  Google Scholar 

  • Cutler SJ, Varela RM, Palma M, Macias FA, Cutler HG (2007) Isolation, structural elucidation and synthesis of biologically active allelochemicals for potential use as pharmaceuticals. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodology. National Institute for Agro-environmental Sciences, Tsukuba, Japan, pp 1–398

    Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature and activity of sorgoleoneL a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    CAS  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003a) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int J Plant Sci 164:861–866

    Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003b) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    CAS  PubMed  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993) Rhizobium meliloti alters flavonoid composition of alfalfa root exudates. In: Rea P (ed) New horizons in nitrogen fixation. Kluwer, Dordrecht, p 335

    Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638

    CAS  Google Scholar 

  • Dayan FE, Howell JL, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan FE, Rimando AM, Pan Z, Baerson SR (2010) Molecule of interest: sorgoleone. Phytochemistry 71:1032–1039

    CAS  PubMed  Google Scholar 

  • Delaux PM, Nanda AK, Mathe C, Sejalon-Delmas N, Dunand C (2012) Molecular and biochemical aspects of plant terrestrialization. Perspect Plant Ecol Evol Syst 14:49–59

    Google Scholar 

  • Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene inducing compounds from alfalfa roots. Appl Environ Microbiol 58:1153–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    PubMed  Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards R, Mizen T, Cook R (1995) Isoflavonoid conjugate accumulation in the roots of lucerne (Medicago sativa) seedlings following infection by the stem nematode (Ditylenchus dipsaci). Nematologica 41:51–66

    Google Scholar 

  • Einhellig FA, Rasmussen JA, Hejl AM, Souza IF (1993) Effects of root exudate sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    CAS  PubMed  Google Scholar 

  • Erlejman AG, Verstraeten SV, Fraga CG, Oteiza PI (2004) The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radic Res 38:1311–1320

    CAS  PubMed  Google Scholar 

  • Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376

    CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feucht W, Treutter D, Polster J (2012) Flavanols in nuclei of tree species: facts and possible functions. Trees Struct Funct 26:1413–1425

    CAS  Google Scholar 

  • Furuya M, Garlston AW, Stowe BB (1962) Isolation from peas of co-factors and inhibitors of indolyl-3-acetic acid oxidase. Nature 193:456–457

    CAS  PubMed  Google Scholar 

  • Grotewold E (2004) The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    CAS  PubMed  Google Scholar 

  • Grotewold E, Davies K (2008) Trafficking and sequestration of anthocyanins. Nat Prod Commun 3:1251–1258

    CAS  Google Scholar 

  • Gurevitch J, Fox GA, Wardle GM, Inderjit TD (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418

    CAS  PubMed  Google Scholar 

  • Hai Z, Jin-Ming G, Wei-Tao L, Jing-Cheng T, Xing-Chang Z, Zhen-Guo J, Yao-Ping X, Ming-An S (2008) Allelopathic substances from walnut (Juglans regia L.). Allelopathy J 21:425–432

    Google Scholar 

  • Hancock DW (2005) Autotoxicity in alfalfa (Medicago sativa L.): implications for crop production. University of Kentucky, Lexington, KY, pp 1–17

    Google Scholar 

  • Harborne JB (1973) Phytochemical methods. Chatman and Hall, London

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  PubMed  Google Scholar 

  • Hartwig UA, Phillips DA (1991) Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    CAS  PubMed  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Z (1998) Function of root border cells in plant health: Pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327

    CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    CAS  PubMed  Google Scholar 

  • Hedge RS, Miller DA (1992) Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron J 84:940–946

    Google Scholar 

  • Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H + ATPase and water uptake. J Chem Ecol 30:2181–2191

    CAS  Google Scholar 

  • Higgins VJ (1978) The effect of some pterocarpanoid phytoalexins on germ tube elongation of Stemphylium botryosum. Phytopathology 68:339–345

    CAS  Google Scholar 

  • Hodnick WF, Milosavljevic EB, Nelson JH, Pardini RS (1988) Electrochemistry of flavonoids - relationships between redox potentials, inhibition of mitochondrial respiration and production of oxygen radicals by flavonoids. Biochem Pharmacol 37:2607–2611

    CAS  PubMed  Google Scholar 

  • Hodnick WF, Duval DL, Pardini RS (1994) Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem Pharmacol 47:573–580

    CAS  PubMed  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenboeck G, Schnitzler JP (1998) Tissue localisation of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    CAS  Google Scholar 

  • Inderjit, Weston LA, Duke SO (2005) Challenges, achievements and opportunities in allelopathy research. J Plant Interact 1: 69–81

    Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    CAS  PubMed  Google Scholar 

  • Jennings JA (2001) Understanding autotoxicity in alfalfa. In: Wisconsin Forage Council: 2001 Proceedings. University of Wisconsin, Madison, WI

    Google Scholar 

  • Jennings JA, Nelson CJ (2002) Zone of autotoxic influence around established alfalfa plants. Agron J 94:1104–1111

    Google Scholar 

  • Jia ZH, Zou BH, Wang XM, Qiu JA, Ma H, Gou ZH, Song SS, Dong HS (2010) Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem Biophys Res Commun 396:522–527

    CAS  PubMed  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    CAS  PubMed  Google Scholar 

  • Juszczuk IM, Wiktorowska A, Malusa E, Rychter AM (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49

    CAS  Google Scholar 

  • Kagan IA, Rimando AM, Dayan FE (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J Agric Food Chem 51:7589–7595

    CAS  PubMed  Google Scholar 

  • Levizou E, Karageorgou PK, Petropoulou G, Grammatikopoulos G, Manetas Y (2004) Induction of ageotropic response in lettuce radical growth by epicuticular flavonoid aglycones of Dittrichia viscosa. Biol Plant 48:305–307

    CAS  Google Scholar 

  • Loi R, Solar M, Weidenhamer JD (2007) Solid phase microextraction method for in vivo measurement of allelochemical uptake. J Chem Ecol 34:70–75

    PubMed  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6:1358–1368

    CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marais JPJ, Deavours B, Dixon RA, Ferreira D (2007) The stereochemistry of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York, NY, pp 1–35

    Google Scholar 

  • Marshner H (1995) Mineral nutrition in higher plants. Academic, London

    Google Scholar 

  • Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphates by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155:75–78

    Google Scholar 

  • Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52:419–426

    CAS  PubMed  Google Scholar 

  • Mathesius U, Watt M (2011) Rhizosphere signals for plant-microbe interactions: implications for field-grown plants. In: Luettge U (ed) Progress in botany. Springer, Berlin, pp 125–161

    Google Scholar 

  • Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant-Microbe Interact 11:1223–1232

    CAS  Google Scholar 

  • McCully M (2005) The rhizosphere: the key functional unit in plant/soil/microbial interactions in the field. Implications for the understanding of allelopathic effects. In: 4th World congress on allelopathy, Wagga Wagga Australia, pp 1–8

    Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Nanayakkara NPD, Khan IA, Abourashed EA, Romangni JG, Duke SO, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59:281–288

    Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: A new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287

    CAS  PubMed  Google Scholar 

  • Morandi D, le Signor C, Gianinazzi-Pearson V, Duc G (2009) A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza 19:435–441

    PubMed  Google Scholar 

  • Mwaja V, Masiunas JB, Weston LA (1995) Effects of fertility on biomass, phytotoxicity and allelochemical content of cereal rye. J Chem Ecol 21:81–96

    CAS  PubMed  Google Scholar 

  • Naoumkina M, Dixon RA (2008) Subcellular localization of flavonoid natural products: a signalling function? Plant Signal Behav 3:573–575

    Google Scholar 

  • Naoumkina MA, Zhao QA, Gallego-Giraldo L, Dai XB, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Google Scholar 

  • Nimbal CI, Weston LA, Pedersen J, Yerkes C (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    CAS  Google Scholar 

  • Oleszek W, Jurzysta M (1987) The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments. Plant Soil 98:67–80

    CAS  Google Scholar 

  • Pan Z, Rimando AM, Baerson SR, Fishbein M, Duke SO (2007) Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3D9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J Biol Chem 282:4326–4335

    CAS  PubMed  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    CAS  PubMed  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) The flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–990

    CAS  PubMed  Google Scholar 

  • Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306:530–536

    CAS  PubMed  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pueppke SG, Vanetten HD (1974) Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches Fusarium solani f. sp. pisi or Rhizoctonia solani. Phytopathology 64:1433–1440

    CAS  Google Scholar 

  • Rao AS (1990) Root flavonoids. Bot Rev 56:1–84

    Google Scholar 

  • Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao JR, Cooper JE (1995) Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol Plant-Microbe Interact 8:855–862

    CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-Binding cassette transporters. Annu Rev Plant Biol 58:347–375

    CAS  PubMed  Google Scholar 

  • Redmond JR, Batley M, Djordjevic MA, Innes RW, Keumpel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    CAS  Google Scholar 

  • Rice EL (ed) (1984) Allelopathy. Academic, Orlando, FL

    Google Scholar 

  • Rimando AM, Dayan FE, Czarnota MA, Weston LA, Duke SO (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J Nat Prod 61:927–930

    CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    CAS  PubMed  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J Plant Interact 1:15–22

    CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bornpadre J, Vierheilig H, Ocampo JA, Godeas A (2007) The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can J Microbiol 53:702–709

    CAS  PubMed  Google Scholar 

  • Schmidt PE, Broughton WJ, Werner D (1994) Nod-factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant-Microbe Interact 7:384–390

    CAS  Google Scholar 

  • Shaw LJ, Hooker JE (2008) The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol Biochem 40:528–536

    CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    CAS  PubMed  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610

    CAS  PubMed  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhizae formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    CAS  Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248:1637–1639

    CAS  PubMed  Google Scholar 

  • Soto-Vaca A, Gutierrez A, Losso JN, Xu ZM, Finley JW (2012) Evolution of phenolic compounds from color and flavor problems to health benefits. J Agric Food Chem 60:6658–6677

    CAS  PubMed  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    CAS  PubMed  Google Scholar 

  • Stenlid G (1963) The effects of flavonoid compounds on oxidative phosphorylation and on the enzymatic destruction of indoleacetic acid. Physiol Plant 16:110–121

    CAS  Google Scholar 

  • Stenlid G (1968) On the physiological effects of phloridzin, phloretin and some related substances upon higher plants. Physiol Plant 21:882–894

    CAS  Google Scholar 

  • Stenlid G (1976) Effects of flavonoids on the polar transport of auxins. Physiol Plant 38:262–266

    CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273

    CAS  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette – type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    CAS  PubMed  Google Scholar 

  • Tesar MB (1993) Delayed seeding of alfalfa avoids autotoxicity after plowing or glyphosate treatment of established stands. Agron J 85:256–263

    CAS  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watt M, Weston LA (2009) Specialised root adaptations display cell-specific developmental and physiological diversity. Plant Soil 322:39–47

    CAS  Google Scholar 

  • Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186

    CAS  Google Scholar 

  • Weston LA (2005) History and current trends in the use of allelopathy for weed management. HortTechnology 15:529–534

    Google Scholar 

  • Weston LA, Czarnota MA (2001) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. In: Kohli R, Pal Singh H, Batish DR (eds) Allelopathy and agroecosystems. The Hayworth Press, London, UK, pp 363–377

    Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389

    CAS  Google Scholar 

  • Weston LA, Nimbal CI, Czarnota MA (1997) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. In: Brighton crop protection conference, Brighton UK, pp 509–516

    Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:2445–3454

    Google Scholar 

  • Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    CAS  PubMed  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematologica 8:89–101

    CAS  Google Scholar 

  • Yang X, Owens TG, Scheffler BE, Weston LA (2004a) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30:199–213

    CAS  PubMed  Google Scholar 

  • Yang X, Scheffler BE, Weston LA (2004b) SOR1, a gene associated with bioherbicide production in sorghum root hairs. J Exp Bot 55:2251–2259

    CAS  PubMed  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    CAS  PubMed  Google Scholar 

  • Yazaki K, Sugiyama M, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

    CAS  Google Scholar 

  • Yoshikawa M, Gemma H, Sobajima Y, Masago H (1986) Rooting cofactor activity of plant phytoalexins. Plant Physiol 82:864–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    CAS  PubMed  Google Scholar 

  • Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    CAS  PubMed  Google Scholar 

  • Zuanazzi JAS, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant-Microbe Interact 11:784–794

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council for funding through a Future Fellowship to UM (FT100100669) and New South Wales Office of Medical and Science Research for funding a Biofirst Life Sciences Research Fellowship to LAW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Weston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weston, L.A., Mathesius, U. (2014). Root Exudation: The Role of Secondary Metabolites, Their Localisation in Roots and Transport into the Rhizosphere. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_11

Download citation

Publish with us

Policies and ethics