Skip to main content

Aufmerksamkeit

  • Chapter
  • First Online:
Allgemeine Psychologie

Zusammenfassung

In dem vorliegenden Kapitel werden zwei zentrale Funktionen der selektiven Aufmerksamkeit diskutiert: die perzeptive Aufmerksamkeit und die handlungssteuernde Aufmerksamkeit. Der Begriff „perzeptive Aufmerksamkeit“ bezieht sich auf die Auswahl relevanter Informationen zur bewussten Verarbeitung und zur Steuerung von Denken und Handeln. Handlungsvermittelnde Aufmerksamkeit ist notwendig, um alle Komponenten des Verarbeitungssystems – von der Wahrnehmung bis zur motorischen Reaktion – so einzustellen, dass die Handlungsziele einer zu erledigenden Aufgabe möglichst effizient erreicht werden. Es werden sowohl theoretische Modelle zur Erklärung verhaltensbasierter Daten als auch die Ergebnisse neurowissenschaftlicher Ansätze dargestellt.

Schlüsselwörter: Filtertheorie der Aufmerksamkeit; Attenuationstheorie der Aufmerksamkeit; Merkmalsintegrationstheorie; Theorie der gesteuerten Suche; Dimensionsgewichtungsansatz; Perzeptive Aufmerksamkeit; Handlungsvermittelnde Aufmerksamkeit; Orts-, objekt- und dimensionsbasierte Ansätze; POC-Kurve; Mehrfachaufgabenperformanz; Doppelaufgabenperformanz; Automatizität; IOR-Effekt; Integrierte Kompetition; Neglect

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Allport, D. A. (1971). Parallel encoding within and between elementary stimulus dimensions. Perception & Psychophysics, 10, 104–108.

    Article  Google Scholar 

  • Allport, D. A. (1980). Attention and performance. In G. Claxton (Hrsg.), Cognitive psychology. New directions (S. 112–153). London: Routledge & Kegan Paul.

    Google Scholar 

  • Allport, D. A. (1987). Selection for action: Some behavioural and neurophysiological considerations of attention and action. In H. Heuer, & A. F. Sanders (Hrsg.), Perspectives on perception and action (S. 395–419). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Allport, D. A. (1989). Visual attention. In M. A. Posner (Hrsg.), Foundations of cognitive science (S. 631–682). Cambridge, MA: MIT Press.

    Google Scholar 

  • Allport, D. A., Antonis, B., & Reynolds, P. (1972). On the division of attention: A disproof of the single channel hypothesis. The Quarterly Journal of Experimental Psychology, 24, 225–235.

    Article  PubMed  Google Scholar 

  • Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umiltà, & M. Moscovitch (Hrsg.), Attention and Performance XV: Conscious and nonconscious information processing (S. 421–452). Cambridge, MA: MIT Press.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence, & J. T. Spence (Hrsg.), The psychology of learning and motivation: Advances in research and theory (S. 89–185). New York: Academic Press.

    Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Baldassi, S., & Verghese, P. (2005). Attention to locations and features: Different top-down modulation of detector weights. Journal of Vision, 56, 556–570.

    Google Scholar 

  • Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 19, 451–470.

    PubMed  Google Scholar 

  • Beck, A. T., Rush, A. J., Shaw, B. F., & Emery, G. (1992). Kognitive Therapie der Depression. München: Psychologie Verlags Union.

    Google Scholar 

  • Behrmann, M., & Tipper, S. P. (1999). Attention accesses multiple reference frames: Evidence from visual neglect. Journal of Experimental Psychology: Human Perception and Performance, 25, 83–101.

    PubMed  Google Scholar 

  • Broadbent, D. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47, 191–196.

    Article  PubMed  Google Scholar 

  • Broadbent, D. E. (1958). Perception and Communication. London: Pergamon Press.

    Book  Google Scholar 

  • Broadbent, D. E. (1982). Task combination and selective intake of information. Acta Psychologica, 50, 253–290.

    Article  PubMed  Google Scholar 

  • Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention. Bridging cognition and neurophysiology. Psychological Review, 112, 291–328.

    Article  PubMed  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547.

    Article  PubMed  Google Scholar 

  • Bundesen, C. (1998). Visual selective attention: Outlines of a choice model, a race model, and a computational theory. Visual Cognition, 5, 287–309.

    Article  Google Scholar 

  • Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrasco, M. (2014). Spatial Attention: Perceptual modulation. In S. Kastner, & A. C. Nobre (Hrsg.), The Oxford Handbook of Attention (S. 183–230). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive Psychology, 22, 225–271.

    Article  PubMed  Google Scholar 

  • Cheal, M., Lyon, D. R., & Gottlob, L. R. (1994). A framework for understanding the allocation of attention in location-precued discrimination. The Quarterly Journal of Experimental Psychology, 47A, 699–739.

    Article  Google Scholar 

  • Chelazzi, L., Duncan, J., Miller, E., & Desimone, R. (1993). A neural basis for visual search in inferior temporal Cortex. Nature, 363, 345–347.

    Article  PubMed  Google Scholar 

  • Cheng, P. W. (1985). Restructuring versus automaticity: Alternative accounts of skill acquisition. Psychological Review, 92, 414–423.

    Article  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech with one and two ears. Journal of the Acoustical Society of America, 25, 975–979.

    Article  Google Scholar 

  • Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8, 387–402.

    Article  PubMed  Google Scholar 

  • Clemens, B., Zvyagintsev, M., Sack, A. T., Heinecke, A., Willmes, K., & Sturm, W. (2013). Comparison of fMRI activation patterns for test and training procedures of alertness and focused attention. Restorative Neurology and Neuroscience, 31, 311–336.

    PubMed  Google Scholar 

  • Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.

    Article  PubMed  Google Scholar 

  • Connor, C. E., Preddie, D. C., Gallant, J. L., & Van Essen, D. C. (1997). Spatial attention effects in macaque area V4. Journal of Neuroscience, 17, 3201–3214.

    PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, G., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discrimination of shape, color and speed: Functional anatomy of positron emission tomography. Journal of Neuroscience, 11, 2383–2402.

    PubMed  Google Scholar 

  • Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET-study of visuospatial attention. Journal of Neuroscience, 13, 1202–1226.

    PubMed  Google Scholar 

  • Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58, 306–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coull, J. T., Frith, C. D., Frackowiak, R. S. J., & Grasby, P. M. (1996). A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia, 34, 1085–1095.

    Article  PubMed  Google Scholar 

  • Cowan, N. (1997). Attention and memory. Oxford, UK: Oxford University Press.

    Google Scholar 

  • David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron, 59, 509–521.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeGutis, J. M., & Van Vleet, T. M. (2010). Tonic and phasic alertness training: a novel behavioral therapy to improve spatial and non-spatial attention in patients with hemispatial neglect. Frontiers in Human Neuroscience, 4, 1–17.

    Article  Google Scholar 

  • Dennett, D. C. (2003). True believers: the intentional strategy and why it works. In T. O’Connor, & D. Robb (Hrsg.), Philosophy of Mind: Contemporary Readings (S. 370–390). London, UK: Routledge.

    Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Desimone, R., & Ungerleider, L. G. (1989). Neural mechanisms of visual processing in monkeys. In F. Boller, & J. Grafman (Hrsg.), Handbook of Neurophysiology (Bd. 2, S. 267–299). Amsterdam: Elsevier.. chapter 14

    Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.

    Article  PubMed  Google Scholar 

  • Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.

    Article  PubMed  Google Scholar 

  • Deutsch, J. A., & Deutsch, D. (1967). Comments on „Selective attention: Perception or response?“. Quarterly Journal of Experimental Psychology, 19, 362–363.

    Article  PubMed  Google Scholar 

  • Diamond, S. J. (1979). Performance by split-brain humans on lateralized vigilance tasks. Cortex, 15, 43–50.

    Article  Google Scholar 

  • Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality. Journal of Experimental Psychology: Human Perception and Performance, 14, 188–202.

    PubMed  Google Scholar 

  • Downing, P. E., Dodds, C. M., & Bray, D. (2004). Why does the gaze of others direct attention. Visual Cognition, 11, 71–79.

    Article  Google Scholar 

  • Driver, J. (1999). Egocentric and object-based visual neglect. In N. Burgess, K. J. Jeffery, & J. O. O’Keefe (Hrsg.), The hippocampal and parietal foundations of spatial cognition (S. 67–89). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Driver, J., & Halligan, P. W. (1991). Can visual neglect operate in object centred co-ordinates? An affirmative case study. Cognitive Neuropsychology, 8, 475–496.

    Article  Google Scholar 

  • Driver, J., & Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1, 17–22.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1979). Divided attention: The whole is more than the sum of its parts. Journal of Experimental Psychology: Human Perception and Performance, 5, 216–228.

    PubMed  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 114, 501–517.

    Article  Google Scholar 

  • Duncan, J. (1996). Cooperating brain systems in selective perception and action. In T. Inui, & J. L. McClelland (Hrsg.), Attention and performance XVI Information integration in perception and communication (S. 549–578). Cambridge, MA: MIT Press.

    Google Scholar 

  • Duncan, J. (2000). Visual attention in mind and brain. In J. J. Bolhuis (Hrsg.), Brain Mechanisms of Perception, Learning and Memory. Oxford: Oxford University Press.

    Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18, 578–588.

    PubMed  Google Scholar 

  • Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Chavda, S., & Shibuya, H. (1999). Systematic analysis of deficits in visual attention. Journal of Experimental Psychology: General, 128, 450–478.

    Article  Google Scholar 

  • Eglin, M., Robertson, L. C., & Knight, R. T. (1989). Visual search performance in neglect syndrome. Journal of Cognitive Neuroscience, 1, 372–385.

    Article  PubMed  Google Scholar 

  • Eimer, M. (1997). Uninformative symbolic cues may bias visual-spatial attention: Behavioral and electrophysiological evidence. Biological Psychology, 46, 67–71.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target in a nonsearch task. Perception & Psychophysics, 16, 143–149.

    Article  Google Scholar 

  • Eriksen, C. W., & James, S. J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40, 225–240.

    Article  Google Scholar 

  • Eriksen, C. W., & Yeh, Y.-Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11, 583–587.

    PubMed  Google Scholar 

  • Eysenck, M. W., & Keane, M. T. (1995). Cognitive psychology: A student’s handbook. Hove: Lawrence Erlbaum Associates.

    Google Scholar 

  • Fagot, C., & Pashler, H. (1992). Making two responses to a single object: Exploring the central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 18, 1058–1079.. s. Errata, gleiches Journal, 19, 443

    PubMed  Google Scholar 

  • Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in Cognitive Sciences, 10, 382–390.

    Article  PubMed  Google Scholar 

  • Felleman, & Van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D., & Posner, M. I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental Neuropsychology, 23, 74–93.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Weber, H. (1993). Express saccades and visual attention. Behavioral and Brain Sciences, 16, 553–567.

    Article  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is dependent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.

    PubMed  Google Scholar 

  • Friesen, C. K., & Kingstone, A. (1998). He eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5, 490–495.

    Article  Google Scholar 

  • Friesen, C. K., & Kingstone, A. (2003). Abrupt onsets and gaze direction cues trigger independent reflexive attention effects. Cognition, 87, B1–B10.

    Article  PubMed  Google Scholar 

  • Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y.-H., Meyer, J. R., & Mesulam, M.-M. (1999). A large-scale distributed network for covert spatial attention. Brain, 122, 1093–1106.

    Article  PubMed  Google Scholar 

  • Gopher, D., & Navon, D. (1980). How is performance limited? Testing the notion of central capacity. Acta Psychologica, 46, 161–180.

    Article  Google Scholar 

  • Hamed, B. S., Duhamel, J. R., Bremmer, F., & Graf, W. (2002). Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cerebral Cortex, 12, 234–245.

    Article  PubMed  Google Scholar 

  • Hampson, P. J. (1989). Aspects of attention and cognitive science. The Irish Journal of Psychology, 10, 261–275.

    Article  Google Scholar 

  • Harris, A., Becker, S., & Remington, R. (2015). Capture by color: Evidence for dimension-specific singleton capture. Attention, Perception, & Psychophysics, 77, 2305–2321.

    Article  Google Scholar 

  • Harter, M. R., & Previc, F. H. (1978). Size-specific information channels and selective attention: Visual evoked potential and behavioral measures. Electroencephalography and Clinical Neurophysiology, 45, 628–640.

    Article  PubMed  Google Scholar 

  • Hawkins, H. L., Shafto, M. G., & Richardson, K. (1988). Effects of target luminance and cue-validity on the latency of visual detection. Perception & Psychophysics, 44, 484–492.

    Article  Google Scholar 

  • Hazeltine, E., Teague, D., & Ivry, R. (2000). Dual-task Performance During Simultaneous Execution: Evidence for Concurrent Response Selection Processes. Poster at the Annual Meeting of the Society of Cognitive Neuroscience, San Francisco, 8.4.–11.4.2000.

    Google Scholar 

  • Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays: I Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75, 511–527.

    Article  PubMed  Google Scholar 

  • Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Muente, T. F., Goes, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzaniga, M. S., & Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546.

    Article  PubMed  Google Scholar 

  • Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences (USA), 95, 781–787.

    Article  Google Scholar 

  • Hillyard, S. A., Anllo-Vento, L., Clark, V. P., Heinze, H. J., Luck, S. J., & Mangun, G. R. (1996). Neuroimaging approaches to the study of visual attention: A tutorial. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Hrsg.), Converging operations in the study of visual selective attention (S. 107–138). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Hirst, W., Spelke, E. S., Reeves, C., Caharack, G., & Neisser, U. (1980). Dividing attention without alternation or automaticity. Journal of Experimental Psychology: General, 109, 98–117.

    Article  Google Scholar 

  • Hoffman, J. E., & Subramaniam, B. (1995). Saccadic eye movements and visual selective attention. Perception & Psychophysics, 57, 787–795.

    Article  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neual mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.

    Article  PubMed  Google Scholar 

  • Humphreys, G. W., Watson, D. G., & Jolicœur, P. (2002). Fractionating the preview benefit in search: Dual-task decomposition of visual marking by timing and modality. Journal of Experimental Psychology: Human Perception and Performance, 28, 640–660.

    PubMed  Google Scholar 

  • Husain, M., & Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 4, 26–36.

    Article  PubMed  Google Scholar 

  • James, W. (1890). The Principles of Psychology. New York: Holt.

    Book  Google Scholar 

  • Johnston, W. A., & Heinz, S. P. (1978). Flexibility and capacity demands of attention. Journal of Experimental Psychology: General, 107, 420–435.

    Article  Google Scholar 

  • Johnston, W. A., & Heinz, S. P. (1979). Depth of nontarget processing in an attention task. Journal of Experimental Psychology, 5, 168–175.

    PubMed  Google Scholar 

  • Johnston, W. A., & Wilson, J. (1980). Perceptual processing of non-targets in an attention task. Memory & Cognition, 8, 372–377.

    Article  Google Scholar 

  • Jolicœur, P., Tombu, M., Oriet, C., & Stevanovski, B. (2002). From perception to action: Making the connection. In W. Prinz, & B. Hommel (Hrsg.), Common mechanisms in perception and action: Attention & performance XIX (S. 558–586). Oxford: Oxford University Press.

    Google Scholar 

  • Jonides, J. (1980). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long, & A. D. Baddeley (Hrsg.), Attention & Performance IX (S. 187–203). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43, 346–354.

    Article  Google Scholar 

  • Kahneman, D. (1973). Attention and Effort. New York: Prentice Hall.

    Google Scholar 

  • Kahneman, D., & Henik, A. (1981). Perceptual organization and attention. In M. Kubovy, & J. R. Pomerantz (Hrsg.), Perceptual organization (S. 181–211). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Karnath, H.-O. (1988). Deficits of attention in acute and recovered visual hemi-neglect. Neuropsychologia, 26, 27–43.

    Article  PubMed  Google Scholar 

  • Karnath, H.-O., & Niemeier, M. (2002). Task-dependent differences in the exploratory behaviour of patients with spatial neglect. Neuropsychologia, 40, 1577–1585.

    Article  PubMed  Google Scholar 

  • Karnath, H.-O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411, 950–953.

    Article  PubMed  Google Scholar 

  • Koski, L. M., Paus, T., & Petrides, M. (1998). Directed attention after unilateral frontal excisions in humans. Neuropsychologia, 36, 1363–1371.

    Article  PubMed  Google Scholar 

  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35, 1897–1916.

    Article  PubMed  Google Scholar 

  • Kramer, A. F., Weber, T. A., & Watson, S. E. (1997). Object-based attentional selection – Grouped arrays or spatially invariant representations?: Comment on Vecera and Farah (1994). Journal of Experimental Psychology: General, 50, 267–284.

    Google Scholar 

  • Krummenacher, J., & Müller, H. J. (2012). Dynamic weighting of feature dimensions in visual search: behavioral and psychophysiological evidence. Frontiers in Psychology, 3(221), 1–12.

    Google Scholar 

  • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96, 101–124.

    Article  Google Scholar 

  • Lambert, A., & Duddy, M. (2002). Visual orienting with central and peripheral precues: Deconfounding the contributions of cue eccentricity, cue discrimination and spatial correspondence. Visual Cognition, 9, 303–336.

    Article  Google Scholar 

  • Lambert, A., Spencer, E., & Mohindra, N. (1987). Automaticity and the capture of attention by a peripheral display change. Current Psychological Research and Reviews, 6, 136–147.

    Article  Google Scholar 

  • Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579.

    Article  PubMed  Google Scholar 

  • Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870.

    Article  PubMed  Google Scholar 

  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology. Human Perception and Performance, 21, 451–468.

    Article  PubMed  Google Scholar 

  • Lavie, N., Beck, D. M., & Konstantinou, N. (2014). Blinded by the load: attention, awareness and the role of perceptual load. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 1–10.

    Article  Google Scholar 

  • Leibovitch, F. S., Black, S. E., Caldwell, C. B., Ebert, P. L., Ehrlich, L. E., & Szalai, J. P. (1998). Brain-behavior correlations in hemispatial neglect using CT and SPECT The Sunnybrook stroke study. Neurology, 50, 901–908.

    Article  PubMed  Google Scholar 

  • Lepsien, J., & Pollmann, S. (2002). Covert reorient-ing and inhibition of return: An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 127–144.

    Article  PubMed  Google Scholar 

  • Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49, 1194–1204.

    Article  PubMed  Google Scholar 

  • Liu, T., Slotnick, S. D., Serences, J. T., & Yantis, S. (2003). Cortical mechanisms of feature-based attentional control. Cerebral Cortex, 13, 1334–1343.

    Article  PubMed  Google Scholar 

  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.

    Article  PubMed  Google Scholar 

  • Logan, G. D. (1988). Towards an instance theory of automatization. Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • Logan, G. D. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103, 603–649.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.

    Article  PubMed  Google Scholar 

  • Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.

    PubMed  Google Scholar 

  • Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mackworth, N. H. (1948). The breakdown of vigilance durning prolonged visual search. Quarterly Journal of Experimental Psychology, 1, 6–21.

    Article  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.

    Article  PubMed  Google Scholar 

  • Malhotra, P., Coulthard, E. J., & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain, 132, 645–660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangun, G. R., Hillyard, S. A., & Luck, S. J. (1993). Electrocortical substrates of visual selective attention. In D. Meyer, & S. Kornblum (Hrsg.), Attention and Performance XIV (S. 219–243). Cambridge (MA): MIT Press.

    Google Scholar 

  • Mangun, G. R., Hopfinger, J. B., Kussmaul, C. L., Fletcher, E. M., & Heinze, H. J. (1997). Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Human Brain Mapping, 5, 273–279.

    Article  PubMed  Google Scholar 

  • Marr, D. (1982). Vision. San Francisco, CA: Freeman.

    Google Scholar 

  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.

    Article  PubMed  Google Scholar 

  • Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J., & Hillyard, S. A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 4, 364–369.

    Google Scholar 

  • Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. (2010). The influence of alertness on spatial and nonspatial components of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 36, 38–56.

    PubMed  Google Scholar 

  • Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology: Human Perception and Performance, 11, 777–787.

    PubMed  Google Scholar 

  • McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19, 431–441.

    PubMed  Google Scholar 

  • McGlinchey-Berroth, R., Milberg, W. P., Verfaellie, M., Alexander, M., & Kilduff, P. T. (1993). Semantic processing in the neglected visual field: Evidence from a lexical decision task. Cognitive Neuropsychology, 10, 79–108.

    Article  Google Scholar 

  • McLeod, P. D. (1977). A dual task response modality effect: Support for multiprocessor models of attention. Quarterly Journal of Experimental Psychology, 29, 651–667.

    Article  Google Scholar 

  • McLeod, P. D., & Posner, M. I. (1984). Priviledged loops from percept to act. In H. Bouma, & D. G. Bouwhuis (Hrsg.), Attention and Performance X Control of language processes (S. 55–66). Hove: Lawrence Erlbaum Associates.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press.

    Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Moll, K., Cardillo, E., & Utman, J. A. (2002). Effects of Competing Speech on Sentence-Word Priming: Semantic, Perceptual, and Attentional Factors. Unpublished manuscript, Department of Experimental Psychology, University of Oxford, UK

    Google Scholar 

  • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784.

    Article  PubMed  Google Scholar 

  • Moran, R., Zehetleitner, M., Müller, H. J., & Usher, M. (2013). Competitive guided search: Meeting the challenge of benchmark RT distributions. Journal of Vision, 13(8), 1–31.. 24

    Article  Google Scholar 

  • Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11, 56–60.

    Article  Google Scholar 

  • Moray, N. (1967). Where is capacity limited? A survey and a model. Acta Psychologica, 27, 84–92.

    Article  PubMed  Google Scholar 

  • Motter, B. C. (1994a). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14, 2178–2189.

    PubMed  Google Scholar 

  • Motter, B. C. (1994b). Neural correlates of feature selective memory and pop-out in extrastriate area V4. Journal of Neuroscience, 14, 2190–2199.

    PubMed  Google Scholar 

  • Müller, H. J., & Humphreys, G. W. (1991). Luminance increment detection: Capacity-limited or not? Journal of Experimental Psychology: Human Perception and Performance, 17, 107–124.

    PubMed  Google Scholar 

  • Müller, H. J., & O’Grady, R. (2000). Dimension-based visual attention modulates dual-judgment accuracy in Duncan’s (1984) one-versus two-object judgment paradigm. Journal of Experimental Psychology: Human Perception and Performance, 26, 1332–1351.

    PubMed  Google Scholar 

  • Müller, H. J., & O’Grady, R. B. (2009). Object-based selection operating on a spatial representation made salient by dimensional segmentation mechanisms: A re-investigation of Egly and Homa (1984). Psychological Research, 73, 271–286.

    Article  PubMed  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.

    PubMed  Google Scholar 

  • Müller, H. J., & Von Mühlenen, A. (2000). Probing distractor inhibition in visual search: Inhibition of return (IOR). Journal of Experimental Psychology: Human Perception and Performance, 26, 1591–1605.

    PubMed  Google Scholar 

  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature discriminations. Perception & Psychophysics, 57, 1–17.

    Article  Google Scholar 

  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature tar- gets across dimensions: stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception & Performance, 29, 1021–1035.

    Google Scholar 

  • Neumann, J. von (1945). Theory and Techniques for Design of Electronic Digital Computers (Draft of a Report on the EDVAC, Contract No. W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn., Philadelphia). Reprinted (in part) in B. Randell (Ed.) (1982). Origins of Digital Computers: Selected Papers (pp. 383–392). Berlin: Springer-Verlag.

    Google Scholar 

  • Neumann, O. (1984). Automatic processing: A review of recent findings and a plea for an old theory. In W. Prinz, & A. F. Sanders (Hrsg.), Cognition and motor processes (S. 255–293). Berlin: Springer.

    Chapter  Google Scholar 

  • Neumann, O. (1987). Beyond capacity: A functional view of attention. In H. Heuer, & A. Sanders (Hrsg.), Perspectives on perception and action (S. 361–394). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Neumann, O., & Klotz, W. (1994). Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification? In C. Umiltà, & M. Moscovitch (Hrsg.), Attention and Performance XV: Conscious and nonconscious information processing (S. 123–150). Cambridge, MA: MIT Press.

    Google Scholar 

  • Nobre, A. C., Coul, J. T., Frith, C. D., & Mesulam, M. M. (1999). Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 2, 11–12.

    Article  PubMed  Google Scholar 

  • Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processing. Cognitive Psychology, 7, 44–64.

    Article  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Hrsg.), Consciousness and self-regulation. Advances in research and theory (S. 1–18). New York: Plenum Press.

    Chapter  Google Scholar 

  • O’Regan, J. K. (1992). Solving the „real“ mysteries of visual perception: the world as an outside memory. Canadian Journal of Psycholgy, 46, 461–488.

    Article  Google Scholar 

  • O’Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7, 191–212.

    Article  Google Scholar 

  • O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.

    Article  PubMed  Google Scholar 

  • Oeffelen, M. P. van, & Vos, P. G. (1983). An algorithm for pattern description on the level of relative proximity. Pattern Recognition, 16, 341–348.

    Article  Google Scholar 

  • Oram, M. W., & Perrett, D. I. (1994). Modeling visual recognition from neurobiological constraints. Neural Networks, 7, 945–972.

    Article  Google Scholar 

  • Parasuraman, R. (1986). Vigilance, monitoring, and search. In K. Boff, L. Kaufmann, & J. Thomas (Hrsg.), Cognitive Processes and Performance Handbook of Perception and Performance, (Bd. 2, S. 43–39). New York: Wiley.

    Google Scholar 

  • Parasuraman, R., Warm, J. S., & See, J. E. (1998). Brain systems of vigilance. In R. Parasuraman (Hrsg.), The Attentive Brain (S. 221–256). Cambridge: MIT Press.

    Google Scholar 

  • Pashler, H. (1990). Do response modality effects support multi-processor models of divided attention? Journal of Experimental Psychology: Human Perception and Performance, 16, 826–842.

    PubMed  Google Scholar 

  • Pashler, H. (1993). Dual-task interferenc and elementary mental mechanisms. In D. E. Meyer, & S. M. Kornblum (Hrsg.), Attention and Performance XIV Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (S. 245–264). Cambridge, MA: MIT Press.

    Google Scholar 

  • Paus, T., Zatorre, R., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., & Evans, A. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9, 392–408.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (2008). Crowding: a cortical constraint on object recognition. Current Opinion in Neurobiology, 18, 445–451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollmann, S., Weidner, R., Müller, H. J., & Cramon, D. Y. von (2000). A fronto-posterior network involved in visual dimension changes. Journal of Cognitive Neuroscience, 12, 480–494.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1978). Chronometric explorations of Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1988). Structures and functions of selective attention. In T. Boll, & B. Bryant (Hrsg.), Master lectures in clinical neuropsychology and brain function: research, measurement, and practice (S. 173–202). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Posner, M. I. (2008). Annals of the New York Academy of Sciences. Measuring alertness, 1129, 193–199.

    Google Scholar 

  • Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.

    Article  Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma, & D. G. Bouwhuis (Hrsg.), Attention and Performance X (S. 531–556). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews in Neuroscience, 13, 25–42.

    Article  Google Scholar 

  • Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Hrsg.), Information processing and cognition. The Loyola Symposium (S. 55–85). Hillsdale, NJ: Lawrenc Erlbaum Associates.

    Google Scholar 

  • Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174.

    Article  Google Scholar 

  • Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 1863–1874.

    PubMed  Google Scholar 

  • Posner, M. I., Peterson, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.

    Article  PubMed  Google Scholar 

  • Previc, F. H., & Harter, M. R. (1982). Electrophysiological and behavioral indicants of selective attention to multifeature gratings. Perception & Psychophysics, 32, 465–472.

    Article  Google Scholar 

  • Rafal, R. D., Calabresi, P. A., Brennan, C. W., & Sciolto, T. K. (1989). Saccade preparation inhibits reorienting to recently attended locations. Journal of Experimental Psychology: Human Perception and Performance, 15, 673–685.

    PubMed  Google Scholar 

  • Raymond, J., Shapiro, K., & Arnell, K. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860.

    PubMed  Google Scholar 

  • Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373.

    Article  Google Scholar 

  • Ristic, J., & Kingstone, A. (2005). Taking control of reflexive social attention. Cognition, 94, B55–B65.

    Article  PubMed  Google Scholar 

  • Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747–758.

    Article  PubMed  Google Scholar 

  • Robertson, I. H., Tegnér, R., Tham, K., Lo, A., & Nimmo-Smith, I. (1995). Sustained attention training for unilateral neglect: theoretical and rehabilitation implications. Journal of Clinical and Experimental Neuropsychology, 17, 416–430.

    Article  PubMed  Google Scholar 

  • Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–381.

    Article  PubMed  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  • Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome Jr, E. D., & Beck, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343.

    Article  PubMed  Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & The PDP Research Group (1986). Parallel Distributed Processing: Foundations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sadaghiani, S., & D’Esposito, M. (2014). Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex, April 25, 1–11.

    Google Scholar 

  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic information processing: I Detection, search, and attention. Psychological Review, 84, 1–66.

    Article  Google Scholar 

  • Schneider, W., & Shiffrin, R. M. (1985). Categorization (restructuring) and automatization: Two separable processes. Psychological Review, 92, 424–428.

    Article  Google Scholar 

  • Schuhfried, G. (1992). Wiener Testsystem. Vienna Reaction Unit, Basic Program. Development and production of scientific equipment. Molding, Austria.

    Google Scholar 

  • Schumacher, E. H., Lauber, E. J., Glass, J. M. B., Zurbriggen, E. L., Gmeindl, L., Kieras, D. E., & Meyer, D. E. (1999). Concurrent response selection processes in dual-task performance: Evidence for adaptive executive control. Journal of Experimental Psychology: Human Perception and Performance, 25, 791–814.

    Google Scholar 

  • Segal, S. J., & Fusella, V. (1970). Influence of imaged pictures and sounds on detection of visual and auditory signals. Journal of Experimental Psychology, 83, 458–464.

    Article  PubMed  Google Scholar 

  • Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. In P. M. A. Rabbitt, & S. Dornic (Hrsg.), Attention and Performance V (S. 157–167). New York: Academic Press.

    Google Scholar 

  • Shepherd, M., Findlay, J. M., & Hockey, R. J. (1986). The relationship between eye movements and spatial attention. The Quarterly Journal of Experimental Psychology, 38A, 475–491.

    Article  Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic information processing: II Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.

    Article  Google Scholar 

  • Shomstein, & Yantis, S. (2004). Control of attention shifts between vision and audition in human cortex. Journal of Neuroscience, 24, 10702–10706.

    Article  PubMed  Google Scholar 

  • Spelke, E., Hirst, W., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 215–230.

    Article  Google Scholar 

  • Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: dual-task studies of simulated driving and conversing on a cellular telephone. Psychological Science, 12, 462–466.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Sturm, W. (2005). Aufmerksamkeitsstörungen. Göttingen: Hogrefe.

    Book  Google Scholar 

  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14, 76–84.

    Article  Google Scholar 

  • Sturm, W., Willmes, K., Orgass, B., & Hartje, W. (1997). Do specific attention deficits need specific training? Neuropsychological Rehabilitation, 7, 81–103.

    Article  Google Scholar 

  • Sturm, W., Simone, A. de, Krause, B. J., Specht, K., Hesselmann, V., Radermacher, I., Herzog, H., Tellmann, L., Müller-Gärtner, H. W., & Willmes, K. (1999). Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37, 797–805.

    Article  PubMed  Google Scholar 

  • Sturm, W., Thimm, M., Küst, J., Karbe, H., & Fink, G. R. (2006). Alertness-training in neglect: behavioral and imaging results. Restorative Neurology and Neuroscience, 24, 371–384.

    PubMed  Google Scholar 

  • Styles, E. A. (1997). The Psychology of Attention. Hove: Psychology Press.

    Book  Google Scholar 

  • Teufel, C., Fletcher, P. C., & Davis, G. (2010). Seeing other minds: attributed mental states influence perception. Trends in Cognitive Sciences, 14, 376–382.

    Article  PubMed  Google Scholar 

  • Thiel, C. M., Zilles, K., & Fink, G. R. (2004). Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage, 21, 318–328.

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Weaver, B., Jerreat, L. M., & Burak, A. L. (1994). Object-based and environment-based inhibition of return of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 20, 478–499.

    PubMed  Google Scholar 

  • Treisman, A. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 242–248.

    Article  Google Scholar 

  • Treisman, A. (1964). Selective attention in man. British Medical Bulletin, 20, 12–16.

    PubMed  Google Scholar 

  • Treisman, A. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–299.

    Article  PubMed  Google Scholar 

  • Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 40A, 201–237.

    Article  Google Scholar 

  • Treisman, A., & Geffen, G. (1967). Selective attention: Perception or response? Quarterly Journal of Experimental Psychology, 19, 1–18.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–126.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Riley, J. (1969). Is selective attention selective perception or selective response? A further test. Journal of Experimental Psychology, 79, 27–34.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.

    PubMed  Google Scholar 

  • Treisman, A., & Schmidt, H. (1982). Illusory conjunction in the perception of objects. Cognitive Psychology, 14, 107–141.

    Article  PubMed  Google Scholar 

  • Treue, S. (2003). Climbing the cortical ladder from sensation to perception. Trends in Cognitive Sciences, 7, 469–471.

    Article  PubMed  Google Scholar 

  • Treue, S., & Martinez-Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575–579.

    Article  PubMed  Google Scholar 

  • Treue, S., & Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT und MST. Nature, 382, 539–541.

    Article  PubMed  Google Scholar 

  • Treue, S., & Maunsell, J. H. R. (1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19, 7591–7602.

    PubMed  Google Scholar 

  • Underwood, G. (1974). Moray vs. the rest: The effects of extended shadowing practice. Quarterly Journal of Experimental Psychology, 26, 368–372.

    Article  PubMed  Google Scholar 

  • Vallar, G. (1998). Spatial hemineglect in humans. Trends in Cognitive Sciences, 2, 87–97.

    Article  PubMed  Google Scholar 

  • Van der Heijden, A. H. C. (1992). Selective Attention in Vision. London: Routledge.

    Google Scholar 

  • Van Zomeren, A. H., & Brouwer, W. H. (1994). Clinical Neuropsychology of Attention. Oxford: Oxford University Press.

    Google Scholar 

  • Vandenberghe, R., Dupont, P., De Bruyn, B., Bormans, G., Michiels, J., Mortelmans, L., & Orban, G. A. (1996). The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. Brain, 119, 1263–1276.

    Article  PubMed  Google Scholar 

  • Vecera, S. P., & Rizzo, M. (2004). What are you looking at? Impaired ‘social attention’ following frontal-lobe damage. Neuropsychologia, 42, 1657–1665.

    Article  PubMed  Google Scholar 

  • Vecera, S. P., & Rizzo, M. (2006). Eye gaze does not produce reflex ive shifts of attenton: Evidence from frontal-lobe damage. Neuropsychologia, 44, 150–159.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203.

    Article  PubMed  Google Scholar 

  • Von Wright, J. M., Anderson, K., & Stenman, U. (1975). Generalisation of conditioned GSR’s in dichotic listening. In P. M. A. Rabbitt, & S. Dornic (Hrsg.), Attention and Performance V (S. 194–204). London: Academic Press.

    Google Scholar 

  • Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50, 433–441.

    Article  Google Scholar 

  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioitizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104, 90–122.

    Article  PubMed  Google Scholar 

  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot paradigm. Perception & Psychophysics, 62, 471–481.

    Article  Google Scholar 

  • Weidner, R., Pollmann, S., Müller, H. J., & Cramon, D. Y. von (2002). Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex, 12, 318–328.

    Article  PubMed  Google Scholar 

  • Welford, A. T. (1952). The „psychological refractory period“ and the timing of high speed performance – A review and a theory. British Journal of Psychology, 43, 2–19.

    Google Scholar 

  • Wickens, C. D. (1984). Processing resources in attention, dual task performance, and work load assessment. In R. Parasuraman, & D. R. Davies (Hrsg.), Varieties of Attention (S. 63–102). New York: Academic Press.

    Google Scholar 

  • Wickens, C. D. (1992). Engineering Psychology and Human Performance (2. Aufl.). New York, NY: Harper Collins.

    Google Scholar 

  • Wiese, E., Wykowska, A., Zwickel, J., & Müller, H. J. (2012). I see what you mean: How attentional selection is shaped by ascribing intentions to others. PLoS ONE, 7(9), e45391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiese, E., Zwickel, J., & Müller, H. J. (2013). The importance of context information for the spatial specificity of gaze cueing. Attention, Perception, & Psychophysics, 75, 967–982.

    Article  Google Scholar 

  • Wiese, E., Wykowska, A., & Müller, H. J. (2014). What we observe is biased by what other people tell us: Beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues. PLoS One, 9(4), e94529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijers, A. A., Lamain, W., Slopsema, J. S., & Mulder, G. (1989). An electrophysiological investigation of the spatial distribution of attention to colored stimuli in focused and divided attention conditions. Biological Psychology, 29, 213–245.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (1999). Inattentional amnesia. In V. Coltheart (Hrsg.), Fleeting memories (S. 71–94). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. Gray (Hrsg.), Integrated Models of Cognitive Systems (S. 99–119). New York: Oxford.

    Chapter  Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 1–7.

    Article  Google Scholar 

  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: an alternative to the Feature Integration Model for visual search. Journal of Experimental Psychology: Human Perception & Performance, 15, 419–433.

    Google Scholar 

  • Womelsdorf, T., Anton-Erxleben, K., Pieper, F., & Treue, S. (2006). Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience, 9, 1156–1160.

    Article  PubMed  Google Scholar 

  • Wu, S.-C., Remington, R. W., & Folk, C. L. (2014). Onsets do not override top-down goals, but they are responded to more quickly. Attention Perception & Psychophysics, 76, 649–654.

    Article  Google Scholar 

  • Wykowska, A., Wiese, E., Prosser, A., & Müller, H. J. (2014). Social perception is tuned to beliefs about the minds of others: an EEG study. PLoS One, 9(4), e94529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16, 121–134.

    PubMed  Google Scholar 

  • Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995–1002.

    Article  PubMed  Google Scholar 

  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative and Neurological Psychology, 18, 459–482.

    Article  Google Scholar 

  • Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target location diminishes crowding and reduces the critical distance. Journal of Vision, 10(10), 1–12.. 16

    Article  Google Scholar 

  • Zeki, S. M. (1993). A Vision of the Brain. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Zimmermann, P., & Fimm, B. (2009). Testbatterie zur Aufmerksamkeitsprüfung – Version 2.2. Herzogenrath: Psytest.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Krummenacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krummenacher, J., Müller, H. (2017). Aufmerksamkeit. In: Müsseler, J., Rieger, M. (eds) Allgemeine Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53898-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53898-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53897-1

  • Online ISBN: 978-3-642-53898-8

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics