Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 22))

Abstract

Since the original description of the distinct natriuretic activity of an extract of rat atria (DeBold et al. 1981), it has become apparent that various members of a natriuretic peptide (NP) hormone family1 are synthesized in a variety of mammalian tissues (Vollmar 1990), but most specifically the heart and brain (Sudoh et al. 1990), and can produce multiple renal, adrenal, cardiovascular, and brain effects (e.g. Needleman et al. 1989; Brenner et al. 1990; Samson and Quirion 1990)2. In addition, preliminary results suggest that NPs may be important in the function of such diverse tissues as the thyroid (Ahren 1990), ovary (Tornell et al. 1990), thymus (Vollmar et al. 1990), and gut (Traynor and O’Grady 1991) of mammals. This variety of effects of NPs is mediated both by direct actions on specific tissues and via intermediary hormones (e.g. Samson and Quirion 1990). The intent of this review is to describe the emerging literature in comparative physiology suggesting that NPs may play an important role in fish osmoregulation and hemodynamics. Surprisingly, the bulk of evidence is consistent with a role in adaptation to seawater (and concomitant hypovolemia), rather than adaptation to freshwater (and hypervolemia) as might be expected from the NP-mediated response to hypervolemia as described in mammals (e.g. Brenner et al. 1990). Before reviewing the data supporting this conclusion, a short discussion of the function of NPs in mammals is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acierno R, Axelsson M, Tota B, Nilsson S (1991) Hypotensive effect of atrial natriuretic factor (ANF) in the Atlantic cod, Gadus morhua. Comp Biochem Physiol 99c: 11–14

    CAS  Google Scholar 

  • Ahren B (1990) Atrial natriuretic factor (ANF) inhibits thyroid hormone secretion in the mouse. Life Sci 47: 1973–1977

    PubMed  CAS  Google Scholar 

  • Anand-Srivastava MB, Sairam MR, Cantin M (1990) Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. J Biol Chem 265: 8566–8572

    PubMed  CAS  Google Scholar 

  • Ando M, Kondo K, Takei Y (1992) Effects of eel atrial natriuretic peptide on NaCl and water transport across the intestine of seawater eel. J Comp Physiol 162b: 436–439

    Google Scholar 

  • Arnold-Reed DE, Balment RJ (1991) Atrial natriuretic factor stimulates in-vivo and in-vitro secretion of Cortisol in teleosts. J Endocrinol 128: R17–R20

    PubMed  CAS  Google Scholar 

  • Arnold-Reed D, Hazon N, Balment R J (1991) Biological actions of atrial natriuretic factor in flatfish, fish Physiol Biochem 9: 271–277

    CAS  Google Scholar 

  • Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142: 155–176

    Google Scholar 

  • Benyajati S, Yokota SD (1990) Renal effects of atrial natriuretic peptide in a marine elasmo-branch. Am J Physiol 258: R1201–R1206

    PubMed  CAS  Google Scholar 

  • Bern HA (1983) Fuctional evolution of prolactin and growth hormone in lower vertebrates. Am Zool 23: 663–671

    CAS  Google Scholar 

  • Beyenbach KW, Baustian MD (1989) Comparative physiology of the proximal tubule. In: Kinne RKH (ed) Structure and function of the kidney, vol 1. Karger, Basel, pp 103–142

    Google Scholar 

  • Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70: 665–699

    PubMed  CAS  Google Scholar 

  • Broadhead CL, O’Sullivan UT, Deacon CF, Henderson IW (1992) Atrial natriuretic peptide in the eel, Anguilla anguilla L.: its cardiac distribution, receptors and actions on isolated branchial cells. J Mol Endocrinol 9: 103–114

    PubMed  CAS  Google Scholar 

  • Brown JA, Gray CJ, Taylor SM (1990) Direct effects of angiotensin II on glomerular ultrastructure in the rainbow trout, Salmo gairdneri. Cell Tissue Res 260: 315–319

    CAS  Google Scholar 

  • Cerra MC, Canonaco M, Tota B (1992) A quantitative autoradiographic study of 125I atrial natriuretic factor in the heart of a teleost fish (Conger conger). J Exp Zool 263: 215–219

    PubMed  CAS  Google Scholar 

  • Chang M-S, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72

    PubMed  CAS  Google Scholar 

  • Chapeau C, Gutkowska J, Schiller PW, Milne RW, Thibault G, Garcia R, Genest J, Cantin M (1985) Localization of immunoreactive synthetic atrial natriuretic factor (ANF) in the heart of various animal species. J Histochem Cytochem 33: 541–550

    PubMed  CAS  Google Scholar 

  • Clavell AL, Stingo AJ, Wei CM, Heublein DM, Burnett J Jr (1993) C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 264: R290–R295

    PubMed  CAS  Google Scholar 

  • Cogan MG (1990) Renal effects of atrial natriuretic factor. Annu Rev Physiol 52: 699–708

    PubMed  CAS  Google Scholar 

  • Dayanithi G, Antoni FA (1990) Atriopeptins are potent inhibitors of ACTH secretion by rat anterior pituitary cells in vitro: involvement of the atrial natriuretic factor receptor domain of membrane-bound gyanylyl cyclase. J Endocrinol 125: 39–44

    PubMed  CAS  Google Scholar 

  • DeBold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 39: 89–94

    Google Scholar 

  • Decourt C, Lahlou B (1987) Evidence for the direct intervention of angiotensin II in the release of Cortisol in teleost fishes. Life Sci 41: 1517–1524

    PubMed  CAS  Google Scholar 

  • Donald JA, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the heart and brain of the gulf toadfish, Opsanus beta. Cell Tissue Res 269: 151–158

    PubMed  CAS  Google Scholar 

  • Donald JA, Vomachka AJ, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the brains and hearts of the spiny dogfish Squalus acanthias and the Atlantic hagfish Myxine glutinosa. Cell Tissue Res 270: 535–545

    PubMed  CAS  Google Scholar 

  • Donald JA, Toop T, Evans DH (1995) Localization and analysis of natriuretic peptide receptors in the gills of the gulf toadfish, Opsanus beta (Teleostei). Am J Physiol 267:R1437–R1444

    Google Scholar 

  • Duff DW, Olson KR (1986) Trout vascular and renal responses to atrial natriuretic factor and heart extracts. Am J Physiol 251: R639–R642

    PubMed  CAS  Google Scholar 

  • Duff DW, Olson KR (1992) Atrial natriuretic peptide clearance receptors in trout: effects of receptor inhibition in vivo. J Exp Zool 262: 343–346

    PubMed  CAS  Google Scholar 

  • Eddy FB, Smith NF, Hazon N, Grierson C (1990) Circulatory and ionoregulatory effects of atrial natriuretic peptide on rainbow trout (Salmo gairdneri Richardson) fed normal or high levels of dietary salt. Fish Physiol Biochem 8: 321–327

    CAS  Google Scholar 

  • Evans DH (1979) Fish. In: Maloiy GMO (ed) Comparative physiology of osmoregulation in animals, vol 1, Academic Press, Orlando, pp 305–390

    Google Scholar 

  • Evans DH (1982) Mechanisms of acid extrusion by two marine fishes: the teleost, Opsanus beta, and the elasmobranch, Squalus acanthias. J Exp Biol 97: 289–300

    CAS  Google Scholar 

  • Evans DH (1984) The roles of gill permeability and transport mechanisms in euryhalinity. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB, Academic Press, Orlando, pp 239–283

    Google Scholar 

  • Evans DH (1986) The role of branchial and dermal epithelia in acid-base regulation in aquatic vertebrates. In: Heisler N (ed) Acid-base regulation in animals, Elsevier, Amsterdam, pp 139–172

    Google Scholar 

  • Evans DH (1990) An emerging role for a cardiac peptide hormone in fish osmoregulation. Annu Rev Physiol 52: 43–60

    PubMed  CAS  Google Scholar 

  • Evans DH (1991) Rat atriopeptin dilates vascular smooth muscle of the ventral aorta from the shark (Squalus acanthias) and the hagfish (Myxine glutinosa). J Exp Biol 157: 551–555

    PubMed  CAS  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes, CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  • Evans DH, Cameron JN (1986) Gill ammonia transport. J Exp Zool 239: 17–23

    CAS  Google Scholar 

  • Evans DH, More K (1988) Modes of ammonia transport across the gill epithelium of the dogfish pup (Squalus acanthias). J Exp Biol 138: 375–397

    CAS  Google Scholar 

  • Evans DH, Takei Y (1992) A putative role for natriuretic peptides in fish osmoregulation. NIPS 7: 15–19

    CAS  Google Scholar 

  • Evans DH, Oikari A, Kormanik GA, Mansberger L (1982) Osmoregulation by the prenatal spiny dogfish, Squalus acanthias. J Exp Biol 101: 295–305

    CAS  Google Scholar 

  • Evans DH, Chipouras E, Payne JA (1989a) Immunoreactive atriopeptin in the plasma of fishes: a potential role in gill hemodynamics. Am J Physiol 257: R939–R945

    PubMed  CAS  Google Scholar 

  • Evans DH, More K, Robbins SL (1989b) Modes of ammonia transport across the gill epithelium of the marine teleost fish Opsanus beta. J Exp Biol 144: 339–356

    Google Scholar 

  • Evans DH, Toop T, Donald J, Forrest JN Jr (1993) C-type natriuretic peptides are potent dilators of shark vascular smooth muscle. J Exp Zool 265: 84–87

    PubMed  CAS  Google Scholar 

  • Forrest JN Jr, Mackay WC, Gallagher B, Epstein FH (1973) Plasma Cortisol response to saltwater adaptation in the American eel, Anguilla anguilla. Am J Physiol 224: 714–717

    PubMed  CAS  Google Scholar 

  • Forrest JN Jr, Kelley GG, Opdyke D, Schofield JP, Aller C (1992) Synthetic shark CNP based on the amino acid sequence of cloned pre-pro shark heart CNP potentially stimulates chloride secretion in the perfused shark rectal gland. Bull Mt Desert Isl Biol Lab 31: 71–72

    Google Scholar 

  • Foskett JK (1987) The chloride cell. Multiple hormonal control of gill salt secretion. In: Kirsch R, Lahlou B (eds) Comparative physiology of environmental adaptations, vol 1. Karger, Basel, pp 83–91

    Google Scholar 

  • Foskett JK, Bern HA, Machen TE, Conner M (1983) Chloride cells and the hormonal control offish osmoregulation. J Exp Biol 106: 255–281

    PubMed  CAS  Google Scholar 

  • Freeman JD, Bernard RA (1990) Atrial natriuretic peptide and salt adaptation in the sea lamprey Petromyzon marinus. Physiologist 33: A-38 (Abstr)

    Google Scholar 

  • Garvin JL (1992) ANF inhibits norepinephrine-stimulated fluid absorption in rat proximal straight tubules. Am J Physiol 263: F581–F585

    PubMed  CAS  Google Scholar 

  • Genest J, Cantin M (1988) The atrial natriuretic factor: its physiology and biochemistry. Rev Physiol Biochem Pharmacol 110: 2–145

    Google Scholar 

  • Gray CJ, Brown JA (1985) Renal and cardiovascular effects of angiotensin II in the rainbow trout, Salmo gairdneri. Gen Comp Endocrinol 59: 375–381

    PubMed  CAS  Google Scholar 

  • Greenwald JE, Ritter D, Tetens E, Rotwein PS (1992) Renal expression of the gene for atrial natriuretic factor. Am J Physiol 263: F974–F978

    PubMed  CAS  Google Scholar 

  • Groot JA, Bakker R (1988) NaCl transport in vertebrate intestine. In: Greger R (ed) Advances in comparative and environmental physiology, vol 1. Springer, Berlin Heidelberg New York, pp 103–152

    Google Scholar 

  • Gu J (1991) Immunocytochemical detection of atrial natriuretic peptide in periarterial myocardiocytes of cardiac ventricles of adult normotensive rat. J Histochem Cytochem 39: 829–834

    PubMed  CAS  Google Scholar 

  • Guibbolini ME, Lahlou B (1987) Neurohypophyseal peptide inhibition of adenylate cyclase activity in fish gills. The effect of environmental salinity. FEBS Lett 220: 98–102

    CAS  Google Scholar 

  • Gunning M, Ballermann BJ, Silva P, Brenner BM, Zeidel ML (1990) Brain natriuretic peptide: interaction with renal ANP system. Am J Physiol 258: F467–F472

    PubMed  CAS  Google Scholar 

  • Gunning M, Cuero C, Solomon R, Silva P (1993) C-type natriuretic peptide receptors and signaling in rectal gland of Squalus acanthias. Am J Physiol 264: F300–F305

    PubMed  CAS  Google Scholar 

  • Hardisty MW (1979) Biology of the cyclostomes. Chapman and Hall, London

    Google Scholar 

  • Heisler N (1989) Interactions between gas exchange, metabolism, and ion transport in animals: an overview. Can J Zool 67: 2923–2935

    CAS  Google Scholar 

  • Heisler N (1993) Acid-base regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 343–378

    Google Scholar 

  • Henderson IW, O’Toole LB, Hazon N (1988) Kidney function. In: Shuttleworth TJ (ed) Physiology of elasmobranch fishes. Springer, Berlin Heidelberg New York, pp 201–214

    Google Scholar 

  • Hentschel H, Elger M (1989) Morphology of glomerular and aglomerular kidneys. In: Kinne RKH (ed) Structure and function of the kidney, vol 1. Karger, Basel, pp 1–72

    Google Scholar 

  • Herndon TM, McCormick SD, Bern HA (1991) Effects of prolactin on chloride cells in opercular membrane of seawater-adapted tilapia. Gen Comp Endocrinol 83: 283–289

    PubMed  CAS  Google Scholar 

  • Hirano T, Ogasawara T, Bolton JP, Collie NL, Hasegawa S, Iwata M (1987) Osmoregulatory role of prolactin in lower vertebrates. In: Kirsch R, Lahlou B (eds) Comparative physiology of environmental adaptations. Karger, Basel, pp 112–124

    Google Scholar 

  • Hirata M, Chang CH, Murad F (1989) Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta 1010: 346–351

    PubMed  CAS  Google Scholar 

  • Hirohama T, Uemura H, Nakamura S, Aotao T (1988) Atrial natriuretic peptide (ANP)-immunoreactivity and ultrastructures of cardiocytes in fish. Zool Sci 5: 833–845

    Google Scholar 

  • Hosoda K, Nakao K, Mukoyama M, Saito Y, Jougasaki M, Shirakami G, Suga S, Ogawa Y, Yasue H, Imura H (1991) Expression of brain natriuretic peptide gene in human heart: production in the ventricle. Hypertension 17: 1152–1155

    PubMed  CAS  Google Scholar 

  • Huang FL, Skala KD, Samson WK (1992) C-type natriuretic peptide stimulates prolactin secretion by a hypothalamic site of action. J Neuroendocrinol 4: 593–597

    PubMed  CAS  Google Scholar 

  • Huang W, Choi CL, Yang Z, Copolov DL, Lim AT (1991) Forskolin-induced immunoreactive atrial natriuretic peptide (ANP) secretion and pro-ANP messenger ribonucleic acid expression of hypothalamic neurons in culture: modulation by glucocorticoids. Endocrinology 128: 2591–2600

    PubMed  CAS  Google Scholar 

  • Ibanez-Santos J, Tsagarakis S, Rees LH, Besser GM, Grossman A (1990) Atrial natriuretic peptides inhibit the release of corticotrophin-releasing factor-41 from the rat hypothalamus in vitro. J Endocrinol 126: 223–228

    PubMed  CAS  Google Scholar 

  • James S, Hassall CJS, Polak JM, Burnstock G (1990) Autoradiographical localization of specific atrial natriuretic peptide binding sites on immunocytochemically identified cells in cultures from rat and guinea-pig hearts. Cell Tissue Res 261: 301–312

    PubMed  CAS  Google Scholar 

  • Johnson BG, Trachte GJ, Drewett JG (1991) Neuromodulatory effect of the atrial natriuretic factor clearance receptor blinding peptide, cANF(4–23)-NH2 in rabbit isolated vasa deferentia. J Pharmacol Exp Ther 257: 720–726

    PubMed  CAS  Google Scholar 

  • Karnaky KJ Jr (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26: 209–224

    CAS  Google Scholar 

  • Karnaky KJ Jr, Valentich JD, Currie MG, Oehlenschlager WF, Kennedy MP (1991) Atriopeptin stimulates chloride secretion in cultured shark rectal gland cells. Am J Physiol 260:C1125–C1130

    PubMed  CAS  Google Scholar 

  • Karnaky KJ Jr, Stidham JD, Nelson DS, McCraw AS, Valentich JD, Kennedy MP, Currie MG (1992) C-type natriuretic peptide is a potent secretagogue for the cultured shark (Squalus acanthias) rectal gland. Bull Mt Desert Isl Biol Lab 31: 122–123

    Google Scholar 

  • Kim SH, Cho KW, Koh GY, Seul KH, So JN, Ryu H (1989) Phylogenetic study on the immunoreactive atrial natriuretic peptide in the heart. Gen Comp Endocrinol 74: 127–131

    PubMed  CAS  Google Scholar 

  • Kirsch R, Meister MF (1982) Progressive processing of ingested water in the gut of sea-water teleosts. J Exp Biol 98: 67–81

    PubMed  CAS  Google Scholar 

  • Kloas W, flugge G, Fuchs E, Stolte H (1988) Binding sites for atrial natriuretic peptide in the kidney and aorta of the hagfish (Myxine glutinosa). Comp Biochem Physiol 91A: 685–688

    CAS  Google Scholar 

  • Knepper MA, Lankford SP, Terada Y (1991) Renal tubular actions of ANF. Can J Physiol Pharmacol 69: 1537–1545

    PubMed  CAS  Google Scholar 

  • Kohno M, Yasunari K, Yokokawa K, Murakawa K, Horio T, Takeda T, Johchi M (1991) Inhibition by atrial and brain natriuretic peptides of endothelin-1 secretion after stimulation with angiotensin II and thrombin of cultured human enfothelial cells. J Clin Invest 87: 1999–2004

    PubMed  CAS  Google Scholar 

  • Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86: 1081–1088

    PubMed  CAS  Google Scholar 

  • Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretc peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123

    PubMed  CAS  Google Scholar 

  • Lahlou B (1980) Les hormones dans l’osmoregulation des poissons. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 201–240

    Google Scholar 

  • Laurent P, Hebibi N (1989) Gill morphometry and fish osmoregulation. Can J Zool 67: 3055–3063

    Google Scholar 

  • Laurent P, Perry SF (1990) Effects of Cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res 259: 429–442

    CAS  Google Scholar 

  • Lee J, Malvin RL (1987) Natriuretic response to homologous heart extract in aglomerular toadfish. Am J Physiol 252: R1055–R1058

    PubMed  CAS  Google Scholar 

  • Leitman DC, Murad F (1987) Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation. In: Rosenblatt M, Jacobs JW (eds) Atrial natriuretic factor, vol 16 (1). Saunders, Philadelphia, pp 79–105

    Google Scholar 

  • Lin H, Randall D (1991) Evidence for the presence of an electrogenic proton pump on the trout gill epithelium. J Exp Biol 161: 119–134

    Google Scholar 

  • Loretz CA, Bern HA (1982) Prolactin and osmoregulation in vertebrates. An update. Neuroendocrinology 35: 292–304

    PubMed  CAS  Google Scholar 

  • Maack T (1992) Receptors of atrial natriuretic factor. Annu Rev Physiol 54: 11–27

    PubMed  CAS  Google Scholar 

  • Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role of silent receptors of atrial natriuretic factor. Science 238: 675–678

    PubMed  CAS  Google Scholar 

  • Mantymaa P, Leppaluoto J, Ruskoaho H (1990) Endothelin stimulates basal and stretch-induced atrial natriuretic peptide secretion from the perfused rat heart. Endocrinology 126: 587–595

    PubMed  CAS  Google Scholar 

  • Marshall WS (1988) NaCl transport in gills and related structures-vertebrates. In: Gregor R (ed) Comparative and environmental physiology. NaCl transport in epithelia, vol 1. Springer, Berlin Heidelberg New York, pp 48–73

    Google Scholar 

  • Martin ER, Ballermann BJ (1989) Atrial natriuretic peptide receptors. In: Brenner BM, Stein JH (eds) Contemporary issues in nephrology. Atrial natriuretic peptide, vol 21. Churchill-Livingstone, New York, pp 105–136

    Google Scholar 

  • Mayer-Gostan N, Wendelaar Bonga SJ, Balm PHM (1987) Mechanisms of hormone actions on gill transport. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology: fundamentals and biomedical implications, vol 2. Regulation of water and electrolytes. Academic Press, San Diego, pp 211–238

    Google Scholar 

  • McCormick SD (1990) Cortisol directly stimulates differentiation of chloride cells in tilapia opercular membrane. Am J Physiol 259: R857–R863

    PubMed  CAS  Google Scholar 

  • McDonald DG, Tang Y, Boutilier RG (1989) Acid and ion transfer across the gills of fish: mechanisms and regulation. Can J Zool 67: 3046–3054

    CAS  Google Scholar 

  • McFarland WN, Munz FW (1965) Regulation of body weight and serum composition by hagfish in various media. Comp Biochem Physiol 14: 393–398

    Google Scholar 

  • Minamino N, Makino Y, Tateyama H, Kangawa K, Matsuo H (1991) Characterization of immunoreactive human C-type natriuretic peptide in brain and heart. Biochem Biophys Res Commun 179: 535–542

    PubMed  CAS  Google Scholar 

  • Mori Y, Nishikawa M, Matsubara H, Takagi T, Toyoda N, Oikawa S, Inada M (1990) Stimulation of rat atrial natriuretic peptide (rANP) synthesis by triodothyronine and thyroxine (T4): T4 as a prohormone in synthesizing rANP. Endocrinology 126: 466–471

    PubMed  CAS  Google Scholar 

  • Needleman P, Blaine EH, Greenwald JE, Michener ML, Saper CB, Stockman PT, Tolunay HE (1989) The biochemical pharmacology of atrial peptides. Annu Rev Pharm Toxicol 29: 23–54

    CAS  Google Scholar 

  • Nishimura H (1987) Role of the renin-angioitensin system in osmoregulation. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology: fundamentals and biomedical implications, vol 2. Regulation of water and electrolytes. Academic Press, San Diego, pp 157–187

    Google Scholar 

  • Nishioka RS, Brau EG, Bern HA (1985) In vitro release of growth hormone from the pituitary gland of tilapia Oreochromis mossambicus. Gen Comp Endocrinol 60: 90–94

    PubMed  CAS  Google Scholar 

  • O’Grady SM (1989) Cyclic nucleotide-mediated effects of ANF and VIP on flounder intestinal ion transport. Am J Physiol 256: C142–C146

    PubMed  Google Scholar 

  • O’Grady SM, field N, Nash NT, Rao MC (1985) Atrial natriuretic factor inhibits Na-K-Cl cotransport in teleost intestine. Am J Physiol 249: C531–C534

    PubMed  Google Scholar 

  • Olson KR, Meisheri KD (1989) Effects of atrial natriuretic factor on isolated arteries and perfused organs of trout. Am J Physiol 256: R10–R18

    PubMed  CAS  Google Scholar 

  • Ota K, Kimura T, Shoji M, Inoue M, Sato K, Ohta M, Yamamoto T, Tsunoda K, Abe K, Yoshinaga K (1992) Interaction of ANP with endothelin on cardiovascular, renal, and endocrine function. Am J Physiol 262: E135-E141

    PubMed  CAS  Google Scholar 

  • Pang PKT, Furspan PB, Sawyer WH (1983) Evolution of neurohypophyseal hormone actions in vertebrates. Am Zool 23: 655–662

    CAS  Google Scholar 

  • Perrott MN, Balment RJ (1990) The renin-angiotensin system and the regulation of plasma Cortisol in the flounder, Platichthys flesus. Gen Comp Endocrinol 78: 414–420

    PubMed  CAS  Google Scholar 

  • Perrott MN, Carrick S, Balment RJ (1991) Pituitary and plasma arginine vasotocin levels in teleost fish. Gen Comp Endocrinol 83: 68–74

    PubMed  CAS  Google Scholar 

  • Perrott MN, Sainsbury RJ, Balment RJ (1993) Peptide hormone-stimulated second messenger production in the teleostean nephron. Gen Comp Endocrinol 89: 387–395

    PubMed  CAS  Google Scholar 

  • Perry SF, Laurent P (1989) Adaptational responses of rainbow trout to lowered external NaCl concentration: contribution of the branchial chloride cell. J Exp Biol 147: 147–168

    CAS  Google Scholar 

  • Powell WH, Miller HAI (1992) Dexamethasone stimulates release of an ANP-like substance from rainbow trout cardiocytes. Am J Physiol 263: R447–R451

    PubMed  CAS  Google Scholar 

  • Price DA, Doble KE, Lee TD, Galli S, Dunn BM, Parten B, Evans DH (1990) The sequencing synthesis and biological activity of an ANP-like peptide isolated from the brain of the killifish, Fundulus heteroclitus. Biol Bull 178: 279–285

    CAS  Google Scholar 

  • Prunet P, Boeur G, Bolton JP, Young G (1989) Smoltification and seawater adaptation in Atlantic salmon (Salmo salary, plasma prolactin, growth hormone, and thyroid hormones. Gen Comp Endocrinol 174: 355–364

    Google Scholar 

  • Rankin JC, Bolis L (1984) Hormonal control of water movement across the gills. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic Press, Orlando, pp 177–201

    Google Scholar 

  • Rashed HM, Sun H, Patel TB (1993) Atrial natriuretic peptide inhibits growth of hepatoblastoma (HEP G2) cells by means of activation of clearance receptors. Hepatology 17: 677–684

    PubMed  CAS  Google Scholar 

  • Reinecke M, Nehls M, Forssmann WB (1985) Phylogenetic aspects of cardiac hormones as revealed by immunocytochemistry, electronmicroscopy, and bioassay. Peptides 6 (Suppl 3): 321–331

    PubMed  CAS  Google Scholar 

  • Reinecke M, Betzler D, Forssmann WG (1987a) Immunocytochemistry of cardiac polypeptide hormones (Cardiodilatin/atrial natriuretic polypeptide) in brain and hearts of Myxine glutinosa (Cyclostomata). Histochemistry 86: 233–239

    PubMed  CAS  Google Scholar 

  • Reinecke M, Betzler D, Forssmann WG, Thorndyke M, Askensten U, Falkmer S (1987a) Electronmicroscopical, immunohistochemical, immunocytochemical and biological evidence for the occurrence of cardiac hormones (ANP/CDD) in chondrichthyes. Histochemistry 87: 531–538

    PubMed  CAS  Google Scholar 

  • Richman NHI, Nishioka RS, Young G, Bern HA (1987) Effects of Cortisol and growth hormone replacement on osmoregulation in hypophysectomized coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 67: 194–201

    PubMed  CAS  Google Scholar 

  • Rocha AS, Kudo LH (1990) Effect of atrial natriuretic factor and cyclic guanosine monophosphate on water and urea transport in the inner medullary collecting duct. Pflügers Arch Eur J Physiol 417: 84–90

    CAS  Google Scholar 

  • Rosenzweig A, Seidman CE (1991) Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem 60: 229–255

    PubMed  CAS  Google Scholar 

  • Ruskoaho H (1992) Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 44: 479–602

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Ogasawara T, Hirano T (1990) Growth hormone kinetics during adaptation to a hyperosmotic environment in rainbow trout. J Comp Physiol (B) 160: 1–6

    CAS  Google Scholar 

  • Samson WK (1990) Neuroendocrine actions of the atrial natriuretic peptides. In: Samson WK Quirion R (ed) Atrial natriuretic peptides, CRC Press, Boca Raton, pp 231–241

    Google Scholar 

  • Samson WK, Quirion R (eds) (1990) Atrial natriuretic peptides, CRC Press, Boca Raton

    Google Scholar 

  • Sasaki A, Kida O, Kita T, Kato J, Nakamura S, Kodama K, Miyata A, Kangawa K, Matsuo H, Tanaka K (1989) Effect of antiserum against d-rat atrial natriuretic polypeptide in spontaneously hypertensive rats. Am J Physiol 257: H1104–H1109

    PubMed  CAS  Google Scholar 

  • Scarborough RM, Hsu MA, Kang L-L, McEnroe GA, Schwartz K, Arfsten A, Lewicki JA (1989) Structural and conformational requirements of ANP clearance receptors. In: Brenner BM, Laragh JH (eds) Progress in atrial peptide research. Raven, New York, pp 23–29

    Google Scholar 

  • Scheide JI, Zadunaisky JA (1988) Effect of atriopeptin II on isolated opercular epithelium of Fundulus heteroclitus. Am J Physiol 254: R27–R32

    PubMed  CAS  Google Scholar 

  • Schenck DB, Phelps MN, Porter JG, Fuller F, Cordell B, Lewicki JA (1987) Purification and subunit composition of atrial natriuretic peptide receptor. Proc Natl Acad Sci USA 84: 1521–1525

    Google Scholar 

  • Schofield JP, Jones D, Forrest JJ (1991) Identification of C-type natriuretic peptide in heart of spiny dogfish shark (Squalus acanthias). Am J Physiol 261: F734–F739

    PubMed  CAS  Google Scholar 

  • Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers KL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162

    PubMed  CAS  Google Scholar 

  • Shibasaki T, Naruse M, Narus K, Yamauchi N, Sim YS, Masuda A, Imaki T, Demura H, Ling N, Inagami T, Shizume K (1988) Effect of sodium ion on atrial natriuretic factor release from rat hypothalamic fragments. Life Sci 42: 1173–1180

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1988) Salt and water balance—extrarenal mechanisms. In: Shuttleworth TJ (ed) Physiology of elasmobranchfishes. Springer, Berlin Heidelberg New York, pp 171–199

    Google Scholar 

  • Shuttleworth TJ (1989) Overview of epithelial ion-transport mechanisms. Can J Zool 67: 3032–3038

    CAS  Google Scholar 

  • Silva P, Stoff JS, Solomon RJ, Lear S, Kniaz D, Greger R, Epstein FH (1987) Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP. Am J Physiol 252: F99–F103

    PubMed  CAS  Google Scholar 

  • Smith HW (1957) Salt and water volume receptors. Am J Med 23: 623–652

    PubMed  CAS  Google Scholar 

  • Smith NF, Eddy FW, Struthers AD, Talbot C (1991) Renin, atrial natriuretic peptide and blood plasma ions in parr and smolts of Atlantic salmon Salmo salar L. and rainbow trout Oncorhynchus mykiss (Walbaum) in fresh water and after short-term exposure to sea water. J Exp Biol 157: 63–74

    CAS  Google Scholar 

  • Solomon R, Taylor M, Dorsey D, Silva P, Epstein FH (1985a) Atriopeptin stimulation of rectal gland in Squalus acanthias. Am J Physiol 249: R348–R354

    PubMed  CAS  Google Scholar 

  • Solomon R, Taylor M, Sheth S, Silva P, Epstein FH (1985b) Primary role of volume expansion in stimulation of rectal gland function. Am J Physiol 248: R638–R640

    PubMed  CAS  Google Scholar 

  • Solomon R, Protter A, McEnroe G, Porter JG, Silva P (1992) C-type natriuretic peptides stimulate chloride secretion in the rectal gland of Squalus acanthias. Am J Physiol 262: R707–R711

    PubMed  CAS  Google Scholar 

  • Stanley JG, fleming WR (1964) Excretion of a hypertonic urine by a teleost. Science 144: 63–64

    PubMed  CAS  Google Scholar 

  • Stingo AJ, Clavell AL, Aarhus LL, Burnett JJ (1992) Cardiovascular and renal actions of C-type natriuretic peptide. Am J Physiol 262: H308–H312

    PubMed  CAS  Google Scholar 

  • Stoff JS, Silva P, Lechan R, Solomon R, Epstein FH (1988) Neural control of shark rectal gland. Am J Physiol 255: R212–R216

    PubMed  CAS  Google Scholar 

  • Sudoh T, Minamino N, Kangawa N, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168: 863–870

    PubMed  CAS  Google Scholar 

  • Suzuki E, Hirata Y, Hayakawa H, Omata M, Kojima M, Kangawa K, Minamino N, Matsuo H (1993) Evidence for C-type natriuretic peptide production in the rat kidney. Biochem Biophys Res Commun 192: 532–538

    PubMed  CAS  Google Scholar 

  • Suzuki R, Takahashi A, Hazon N, Takei Y (1991) Isolation of high-molecular-weight C-type natriuretic peptide from the heart of a cartilaginous fish (European dogfish, Scyliorhinus canicula). FEBS Lett 282: 321–325

    PubMed  CAS  Google Scholar 

  • Suzuki R, Takahashi A, Takei Y (1992) Different molecular forms of C-type natriuretic peptide isolated from the brain and heart of an elasmobranch, Triakis scyllia. J Endocrinol 135: 317–323

    PubMed  CAS  Google Scholar 

  • Takei Y, Balment RJ (1993) Biochemistry and physiology of a family of eel natriuretic peptides. Fish Biochem Physiol 11: 183–188

    CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1989) Amino acid sequence and relative biological activity of eel atrial natriuretic peptide. Biochem Biophys Res Commun 164: 537–543

    PubMed  CAS  Google Scholar 

  • Takei Y, Tamaki H, Ando K (1990a) Identification and partial characterization of immunoreactive and bioactive atrial natriuretic peptide from eel heart. J Comp Physiol (B) 160: 119–126

    CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S, Takao T, Shimonishi Y (1990b) Amino acid sequence and relative biological activity of a natriuretic peptide isolated from eel brain. Biochem Biophys Res Commun 170: 883–891

    PubMed  CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1991) A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Lett 282: 317–320

    PubMed  CAS  Google Scholar 

  • Takei Y, Ando K, Kawakami M (1992) Atrial natriuretic peptide in eel plasma, heart and brain characterized by homologous radioimmunoassay. J Endocrinol 135: 325–331

    PubMed  CAS  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Ando K (1994) Eel ventricular natriuretic peptide: isolation of a low molecular size form and characterization of plasma form by homologous radiioimmunoassay. J Endocrinol 141: 81–89

    PubMed  CAS  Google Scholar 

  • Toop T, Donald JA, Evans DH (1995) Localization and characteristics of natriuretic peptide receptors in the gills of the Atlantic hagfish, Myxine glutinosa (Agnatha). J Exp Biol 198:117–126

    PubMed  CAS  Google Scholar 

  • Tornell J, Carlsson B, Billig H (1990) Atrial natriuretic peptide inhibits spontaneous rat oocyte maturation. Endocrinology 126: 1504–1508

    PubMed  CAS  Google Scholar 

  • Traynor TR, O’Grady SM (1991) Brain natriuretic peptide stimulates K and Cl secretion across porcine distal colon epithelium. Am J Physiol 260: C750–C755

    PubMed  CAS  Google Scholar 

  • Uemura H, Naruse M, Hirohama T, Nakamura S, Kasuya Y, Aoto T (1990) Immunoreactive atreal natriuretic peptide in the fish heart and blood plasma examined by electron microscopy, immunohistochemistry and radioimmunoassay. Cell Tissue Res 260: 235–247

    CAS  Google Scholar 

  • Vallarino M, Feuilloley M, Gutkowska J, Cantin M, Vaudry H (1990) Localization of atrial natriuretic factor (ANF)-related peptides in the central nervous system of the elasmobranch fish Scyliorhinus canicula. Peptides 11: 1175–1181

    PubMed  CAS  Google Scholar 

  • Vollmar AM (1990) Atrial natriuretic peptide in peripheral organs other than the heart. Klin Wochenschr 68: 699–708

    PubMed  CAS  Google Scholar 

  • Vollmar AM, Lang RE, Hanze J, Schulz R (1990) The rat thymus—a site of atrial natriuretic peptide synthesis. Peptides 11: 33–37

    PubMed  CAS  Google Scholar 

  • Vollmar AM, Gerbes AL, Nemer M, Schulz R (1993) Detection of C-type natriuretic peptide (CNP) transcript in the rat heart and immune organs. Endocrinology 132: 1872–1874

    PubMed  CAS  Google Scholar 

  • Volpe M, Pepino P, Lembo G, Pignalosa S, Mele AF, Rubattu S, Condorelli G, Covino E, Trimarco B (1991) Modulatory role of angiotensin-II in the secretion of atrial natriuretic factor in rabbits. Endocrinology 128: 2427–2431

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga SE (1993) Endocrinology. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 469–502

    Google Scholar 

  • Westenfelder C, Birch FM, Baranowski RL, Rosenfeld MJ, Shiozawa DK, Kablitz C (1988) Atrial natriuretic factor and salt adaptation in the teleostfish Gila atraria. Am J Physiol 255: F1281–1286

    PubMed  CAS  Google Scholar 

  • Wilson JX (1984) The renin-angiotensin system in nonmammalian vertebrates. Endocrinol Rev 5: 45–61

    CAS  Google Scholar 

  • Winquist RJ, Hintze TH (1990) Mechanisms of atrial natriuretic factor-induced vasodilation. Pharmacol Ther 48: 417–426

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Kimura S, Hasui K, Fujisawa Y, Tamaki T, Fukui K, Iwao H, Abe Y (1988) Calcitonin gene-related peptide (CGRP) stimulates the release of atrial natriuretic peptide (ANP) from isolated rat atria. Biochem Biophys Res Commun 155: 1452–1458

    PubMed  CAS  Google Scholar 

  • Young G (1988) Enhanced response of the interrenal of coho salmon (Oncorhynchus kisutch) to ACTH after growth hormone treatment in vivo and in vitro. Gen Comp Endocrinol 71: 85–92

    PubMed  CAS  Google Scholar 

  • Zadunaisky J (1984) The chloride cell: the active transport of chloride and the paracellular pathways. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XB. Academic Press, Orlando, pp 129–176

    Google Scholar 

  • Zarmir N, Haass M, Dave JR, Zukowska-Grojec Z (1987) Anterior pituitary gland modulates the release of anterior natriuretic peptides from cardiac atria. Proc Natl Acad Sci USA 84: 541–545

    Google Scholar 

  • Zeidel ML (1990) Renal actions of atrial natriuretic peptide: regulation of collecting duct sodium and water transport. Annu Rev Physiol 52: 747–759

    PubMed  CAS  Google Scholar 

  • Zeidel ML (1993) Hormonal regulation of inner medullary collecting duct sodium transport. Am J Physiol 265: F159–F173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, D.H. (1995). The Roles of Natriuretic Peptide Hormones in Fish Osmoregulation and Hemodynamics. In: Heisler, N. (eds) Mechanisms of Systemic Regulation: Acid—Base Regulation, Ion-Transfer and Metabolism. Advances in Comparative and Environmental Physiology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52363-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52363-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52365-6

  • Online ISBN: 978-3-642-52363-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics