Skip to main content

Images of Cells Changing Shape: Pseudopods, Skeletons and Motile Behaviour

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

Cell locomotion is of importance in embryological development, wound healing and in the invasiveness and metastasis of tumour cells. The advent of microcomputers and image processing systems has greatly facilitated the study of cell locomotion. This report comments on some of the methods that have been developed to capture and process images of cells in both two and three-dimensional environments and presents ways of quantifying and analysing the locomotory behaviours of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen T. D., Schor S. L., Schor A. M. (1984) An ultra-structural review of collagen gels: A model system for cell matrix, cell basement membrane and cell-cell interaction. Scan. Elect. Micros. 1: 375–390

    Google Scholar 

  • Arcelli C. (1981) Pattern thinning by contour tracing. Computer Graphics and Image Processing 17: 130–144.

    Article  Google Scholar 

  • Arcelli C., Sanniti di Baja G. (1987) A one pass two-operation process to detect skeletal pixels on a 4-distance transform. PAMI 1987

    Google Scholar 

  • Arcelli C., Sanniti di Baja G. (1985) A width dependent fast thinning algorithm. IEEE Trans. Pattern and Machine Intelligence, PAMI-7: 463–474.

    Google Scholar 

  • Berns G. S., Berns M. W. (1982) Computer based tracking of living cells. Exp, Cell Res. 142: 103–109

    Article  Google Scholar 

  • Blum H. (1964) A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form. Symposium, Boston, 1964. Ed. W. Wathen-Dunn, M.I.T. Press, Cambridge, Mass, 1967, pp. 362–380.

    Google Scholar 

  • Blum H. (1973) Biological shape and visual science. J. Theoret. Biol. 38: 205–287.

    Article  Google Scholar 

  • Blum H., Nagel R. (1978) Shape description using weighted symmetric axis features. Pattern Recognition 10: 167–180.

    Article  MATH  Google Scholar 

  • Bogefors G., Sanniti di Baja G. (1988) Skeletonizing the distance transform on the hexagonal grid. Proc. Natl. Conf. Pattern Recognition 1: 504–507.

    Google Scholar 

  • Boyarsky A. (1975) A Markov chain model for human granulocyte movement. J. Math. Biol. 2: 69–78.

    Article  MATH  Google Scholar 

  • Boyarsky A., Noble P. B. (1977) A Markov chain charaterization of human neutrophil locomotion under neutral and chemotactic conditions. Canad. J. Physiol. Pharm. 55: 1–6.

    Article  Google Scholar 

  • Breiman L. (1967) Probability and Stochastic Processes. Addison-Wesley, Mass.

    Google Scholar 

  • Coates T. D., Harman J. T. McGuire, W. A. (1985) A computer based program for video analysis of Chemotaxis under agarose. Comp. Methods and Programs in Biomed. 21: 195–212.

    Article  Google Scholar 

  • Conrad G. W., Hart G. W., Chen Y. (1977) Differences in-vitro between fibroblast-like cells from cornea, heart and skin of embryonic chicks. J. Cell Sci. 26: 119–137.

    Google Scholar 

  • Dill A. R., Levine M. D., Noble P. B. (1987) Multiple resolution skeletons. IEEE Trans. Pattern Anal. Machine Intelligence PAMI-9, 495–504.

    Google Scholar 

  • Dow J. A. T., Lackie J. M., Crocket K. V. (1987) A simple microcomputer system for real-time analysis of cell behaviour. J. Cell Sci. 87: 171–182.

    Google Scholar 

  • Dunn G. A., Brown A. F. (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell Sci. 83: 313–341.

    Google Scholar 

  • Elsdale T., Bard J. (1972) Collagen substrata for studies on cell behaviour. J. Cell Biol. 54: 626–637.

    Article  Google Scholar 

  • Hassell T. M., Stanck E. J. (1983) Evidence that healthy human gingiva contains functionally heterogeneous fibroblast subpopulations. Arch. Oral Biol. 28: 617–625.

    Article  Google Scholar 

  • Haston W. S., Shields J. M., Wilkinson P. C. (1982) Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J. Cell Biol. 92: 747–752.

    Article  Google Scholar 

  • Inoué S. (1987) Video Microscopy. Plennum Press. New York.

    Google Scholar 

  • Kass M., Witkin A., Terzopoulos D. (1987) Snakes: active contour models. IEEE Proc. Ist. Int. Conf. Computer Vision. 259–268.

    Google Scholar 

  • Klein F., Kubler D. (1987) Euclidean distance transformation and model- guided image interpretation. Pattern Recog. Letters 5: 19–30.

    Article  Google Scholar 

  • Levine M. D. (1978) A knowledge-based computer vision system. In Computer Vision Systems. Eds. Hanson, A., Riseman, E., Academic Press, New York. pp. 335

    Google Scholar 

  • Levine M. D., Youssef Y. M., Noble P. B., Boyarsky A. (1980) The quantification of blood cell motion by a method of automatic digital picture processing. IEEE Trans, Patter Anal. Machine Intelligence PAMI-2: 444–450.

    Google Scholar 

  • Levine M. D., Noble P. B., Youssef Y. M. (1983) NATO ANSI series F2. Image sequence processing and dynamic scene analysis. Ed. Huang, T.S., Springer-verlag. Berlin.

    Google Scholar 

  • Levine M. D., Noble P. B., Youssef Y. M. (1983) Understanding blood cell motion. Comp. Vision, Graphics and Image Processing 21: 58–84.

    Article  Google Scholar 

  • Leymarie F., Levine M. D. (1989) Snakes and skeletons. Technical report TR-CIM -89–3, McGill Research Centre for Intelligent Machines.

    Google Scholar 

  • Noble P. B., Lewis M. G. (1979) Lymphocyte migration and infiltration in melanoma. Pigment Cell 5: 174–181.

    Google Scholar 

  • Noble P. B., Bentley K. C. (1980) An in-vitro study of lymphocyte migration in the presence of pre-malignant and malignant oral lesions. Int. J. Oral Surgery 9: 148–153.

    Article  Google Scholar 

  • Noble P. B., Levine M. D. (1986) Computer-assisted analyses of cell locomotion and Chemotaxis. CRC Press, Boca Raton, Florida, pp 150

    Google Scholar 

  • Noble P. B. (1987) Extracellular matrix and cell migration: Locomotory characteristics of Mos-11 cells within a three-dimensional hydrated collagen lattice. J. Cell Sci. 87: 241–248

    Google Scholar 

  • Noble P. B., Boyarsky A. (1988) Analysis of cell three-dimensional locomotory vectors. Exptl. Cell Biol. 56: 289–296.

    Google Scholar 

  • Noble P. B., Shields E. D. (1989) Time-based changes in fibroblast three-dimensional locomotory characteristics and phenotypes. Expl. Cell Biol. 57: 238–245

    Google Scholar 

  • O’Gorman L., Sanderson A. C. (1984) The converging squares algorithm: An efficient method for locating peaks in multidimensions. IEEE Trans. Pattern Anal. Machine Intelligence PAMI-6: 280–288.

    Google Scholar 

  • Peterson S. C., Noble P. B. (1972) A two-dimensional random walk analysis of human granulocyte movement. Biophys. J. 12: 1048–1055.

    Article  Google Scholar 

  • Ramer U. (1972) An iterative procedure for polygonal approximation of plane curves. Compt. Graphics Image Process. 1: 244

    Article  Google Scholar 

  • Rosenfeld A., Pfaltz J. L. (1966) Sequential operations in digital picture processing. J. ACM. 13: 471–494.

    Article  MATH  Google Scholar 

  • Rosenfeld A., Kak A. C. (1976) Digital picture processing. Academic Press, New York.

    Book  Google Scholar 

  • Schor S. L., Schor A. M., Rushton G., Smith L. (1985) Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: Evidence for iso-formic transformation during foetal development. J. Cell Sci. 73: 221–234.

    Google Scholar 

  • Schor S. L., Schor A. M. (1987) Clonal heterogeneity in fibroblast phenotype: Implications for the control of epithelial-mesenchymal interactions. BioEssays 7: 200–204.

    Article  Google Scholar 

  • Shields E. D., Noble P. B. (1987) Methodology for detection of heterogeneity of cell locomotory phenotypes in three-dimensional gels. Exptl. Cell Biol. 55: 250–256.

    Google Scholar 

  • Thurston G., Jaggi B., Palcic B. (1986) Cell motility measurements with an automatic microscope system. Exp. Cell Res. 165: 380–390.

    Article  Google Scholar 

  • Wilkinson P. C. (1982) Chemotaxis and Inflammation. 2nd. Edition, Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Yoshigato K., Taira T., Yamamoto J. B. (1985) Growth inhibition of human fibroblasts by reconstituted collagen fibrils. Biomed. Res. 6: 81–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noble, P.B. (1990). Images of Cells Changing Shape: Pseudopods, Skeletons and Motile Behaviour. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics