Skip to main content

Abstract

The echinoderms have been a conspicuous marine phylum since at least the start of the Palaeozoic era. Today the phylum Echinodermata comprises roughly 5000 species described for the following classes: Crinoidea (feather stars and sea lilies), Ophiuroidea (brittle stars and basket stars), Holothuroidea (sea cucumbers), Echinoidea (sea urchins, heart urchins and sand dollars) and Asteroi-dea (starfishes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelis E de, Viglia A, Watanabe T, Shirai H, Kubota J, Kanatani H (1972) Presence of granules containing gonad-stimulating substance in starfish radial nerve. Annot Zool Jpn 45:16–21

    Google Scholar 

  • Bargmann W, Harnack M von, Jacob K (1962) Über den Feinbau des Nervensystems des Seesternes (Asterias rubens L). Ein Beitrag zur vergleichenden Morphologie der Glia. Z Zellforsch 56:573–594

    Article  PubMed  CAS  Google Scholar 

  • Barker MF (1978) Structure of the organs of attachment of brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea). J Exp Mar Biol Ecol 33:1–36

    Article  Google Scholar 

  • Bossche JP van den, Jangoux M (1976) Epithelial origin of starfish coelomocytes. Nature 261:227–228

    Article  PubMed  CAS  Google Scholar 

  • Bouland C, Massin C, Jangoux M (1982) The fine structure of the buccal tentacles of Holothuria forskali (Echinodermata, Holothuroidea). Zoomorphology 101:133–149

    Article  Google Scholar 

  • Brandenburger JL, Eakin RM (1980) Cytochemical localization of acid phosphatase in ocelli of the seastar Patina miniata during recycling of photoreceptoral membranes. J Exp Zool 214:127–140

    Article  CAS  Google Scholar 

  • Brehm P (1977) Electrophysiology and luminescence of an ophiuroid radial nerve. J Exp Biol 71:213–227

    PubMed  CAS  Google Scholar 

  • Brehm P, Morin JG (1977) Localization and characterization of luminescent cells in Ophiopsila californica and Amphipholis squamata (Echinodermata: Ophiuroidea). Biol Bull 152:12–25

    Article  PubMed  CAS  Google Scholar 

  • Brown AC (1967) The elimination of foreign particles injected into the coelom of the holothurian Cucumaria stephensoni D John. Zool Afr 3:3–8

    Google Scholar 

  • Buchanan JB (1963) Mucus secretion within the spines of ophuiroid echinoderms. Proc Zool Soc (London) 141:251–259 + pl I-II

    Article  Google Scholar 

  • Burke RD (1978) The structure of the nervous system of the pluteus larva of Strongylocentrotus purpuratus. Cell Tissue Res 191:233–247

    Article  PubMed  CAS  Google Scholar 

  • Burke RD (1980) Podial sensory receptors and the induction of metamorphosis in echinoids. J Exp Mar Biol Ecol 47:223–234

    Article  Google Scholar 

  • Burke RD (1981) Echinoid metamorphosis: retraction and resorption of larval tissues. In: Abstr Int Echinoderms Conf, Tampa Bay, Sept 1981

    Google Scholar 

  • Cameron RA, Hinegardner RT (1978) Early events in sea urchin metamorphosis. Description and analysis. J Morphol 157:21–32

    Article  Google Scholar 

  • Chaet AB, Philpott DE (1964) A new subcellular particle secreted by the starfish. J Ultrastruct Res 11:354–362

    Article  PubMed  CAS  Google Scholar 

  • Chia FS (1969) Some observations on the locomotion and feeding of the sand dollar, Dendraster excentricus (Eschscholtz). J Exp Mar Biol Ecol 3:162–170

    Article  Google Scholar 

  • Chia FS (1970) Histology of the globiferous pedicellareae of Psammechinus miliaris (Echinoder-mata: Echinoidea). J Zool (London) 160:9–16

    Article  Google Scholar 

  • Cobb JLS (1968) The fine structure of the pedicellariae of Echinus esculentus (L). II. The sensory system. J R Microsc Soc 88:223–233

    Article  Google Scholar 

  • Cobb JLS, Sneddon E (1977) An ultra-structural study of the gills of Echinus esculentus. Cell Tissue Res 182:265–274

    Article  PubMed  CAS  Google Scholar 

  • Coleman R (1969a) Ultrastructure of the tube foot sucker of a regular echinoid, Diadema antillarum Philippi, with especial reference to secretory cells. Z Zeilforsch 96:151–161

    Article  CAS  Google Scholar 

  • Coleman R (1969b) Ultrastructure of the tube foot wall of a regular echinoid, Diadema antillarum Philippi. Z Zellforsch 96:162–172

    Article  PubMed  CAS  Google Scholar 

  • Eakin RM (1982) Continuity and diversity in photoreceptors. In: Westfall JA (ed) Visual cells in evolution. Raven Press, New York, pp 91–105

    Google Scholar 

  • Eakin RM, Brandenburger JL (1979) Effects of light on ocelli of seastars. Zoomorphology 92:191–200

    Article  Google Scholar 

  • Emerson CJ (1977) Larval development of the sea star, Leptasterias polaris, with particular reference to the optic cushion and ocelli. In: Scanning electron microscopy, vol II. Proceedings of the workshop on other biological applications of the SEM/STEM. IIT Res Inst, Chicago, pp 631–638

    Google Scholar 

  • Endean R (1966) The coelomocytes and coelomic fluids. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley Interscience, New York, pp 301–328

    Google Scholar 

  • Engster MS, Brown SC (1972) Histology and ultrastructure of the tube foot epithelium in the phanerozonian starfish, Astropecten. Tissue Cell 4:503–518

    Article  PubMed  CAS  Google Scholar 

  • Féral JP (1980) Cuticle et bactéries associées des epidermes digestif et tégumentaire de Leptosy-napta galliennei (Herapath) (Holothurioidea: Apoda) — Premières données. In: Jangoux M (ed) Echinoderms: Past and present. Balkema, Rotterdam, pp 285–290

    Google Scholar 

  • Ferguson JC (1966) Cell production in the Tiedemann bodies and haemal organs of the starfish, Asterias forbesi. Trans Am Microsc Soc 85:200–209

    Article  Google Scholar 

  • Florey E, Cahill MA (1977) Ultrastructure of sea urchin tube feet. Evidence for connective tissue involvement in motor control. Cell Tissue Res 177:195–214

    Article  PubMed  CAS  Google Scholar 

  • Fontaine AR (1955) Secretion of a highly sulphated acid mucopolysaccharide by the brittle-star, Ophiocomina nigra. Nature 176:606–607

    Article  CAS  Google Scholar 

  • Fontaine AR (1964) The integumentary mucous secretions of the ophuiroid Ophiocomina nigra. J Mar Biol Assoc UK 44:145–162

    Article  Google Scholar 

  • Fox DL (1979) Biochromy, natural coloration of living things. Univ California Press, Berkeley

    Google Scholar 

  • Gras H, Weber W (1977) Light-induced alterations in cell shape and pigment displacement in chromatophores of the sea urchin Centrostephanus longispinus. Cell Tissue Res 182:165–176

    Article  PubMed  CAS  Google Scholar 

  • Green CR (1981) Fixation-induced intramembrane particle movement demonstrated in freeze-fracture replicas of a new type of septate junction in echinoderm epithelia. J Ultrastruct Res 75:11–22

    Article  PubMed  CAS  Google Scholar 

  • Harrison G (1966) Light and electron microscopic studies of secretion packets having adhesive qualities in the tube feet of echinoderms. In: Ueda R (ed) Proc 6th Int Congr Electron Microsc, vol II. Maruzen, Tokyo, pp 411–412

    Google Scholar 

  • Harrison G (1968) Subcellular particles in echinoderm tube feet. II. Class Holothuroidea. J Ultrastruct Res 23:124–133

    Article  PubMed  CAS  Google Scholar 

  • Harrison G, Philpott D (1966) Subcellular particles in echinoderm tube feet. I. Class Asteroidea. J Ultrastruct Res 16:537–547

    Article  PubMed  CAS  Google Scholar 

  • Heatfield BM (1971) Origin of calcified tissue in regenerating spines of the sea urchin, Strongy-locentrotus purpuratus (Stimpson): a quantitative radioautographic study with tritiated thymidine. J Exp Zool 178:233–246

    Article  PubMed  CAS  Google Scholar 

  • Heatfield BM, Travis DF (1975a) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotuspurpuratus, I. Cell types without spherules. J Morphol 145:13–50

    Article  PubMed  CAS  Google Scholar 

  • Heatfield BM, Travis DF (1975b) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus, II. Cell types with spherules. J Morphol 145:51–72

    Article  PubMed  CAS  Google Scholar 

  • Hendler G, Meyer DL (1982) Ophiuroids Flagrante delicto and notes on the spawning behavior of other echinoderms in their natural habitat. Bull Mar Sci 32:600–607

    Google Scholar 

  • Herring PJ (1974) New observations on the bioluminescence of echinoderms. J Zool (London) 172:401–418

    Article  Google Scholar 

  • Höbaus E (1979) Skin excretion in sea urchins. Naturwissenschaften 66:160–161

    Article  Google Scholar 

  • Holland LZ, Holland ND (1975) The fine structure of epidermal glands of regenerating and mature globiferous pedicellariae of a sea urchin (Lytechinus pictus). Tissue Cell 7:723–737

    Article  PubMed  CAS  Google Scholar 

  • Holland ND (1965) Cell proliferation in post-embryonic specimens of the purple sea urchin (Strongylocentrotus purpuratus): an autoradiographic investigation employing tritiated thymidine. Doct Diss, Stanford Univ

    Google Scholar 

  • Holland ND (1969) An electron microscopic study of the papillae of crinoid tube feet. Pubbl Staz Zool Napoli 37:575–580

    Google Scholar 

  • Holland ND, Grimmer JC (1975) Epidermal mucus and the reproduction of a crinoid echino-derm. Nature 255:223–224

    Article  PubMed  CAS  Google Scholar 

  • Holland ND, Kubota H (1975) Correlated scanning and transmission electron microscopy — of larvae of the feather star Comanthus japonica (Echinodermata: Crinoidea). Trans Am Microsc Soc 94:58–70

    Article  Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool (Stockholm) 59:169–185

    Article  Google Scholar 

  • Huet M (1972) Étude ultrastructurale et évolution de la cellule neuroépithéliale de l’épiderme du bras de l’étoile de mer, Asterina gibbosa Penn. en régénération. Z Zellforsch 126:75–89

    Article  PubMed  CAS  Google Scholar 

  • Hyman LH (1955) The invertebrates, vol IV. Echinodermata. McGraw-Hill, New York

    Google Scholar 

  • Johnson PT, Chapman FA (1970a) Infection with diatoms and other microorganisms in sea urchin spines (Strongylocentrotusfranciscanus). J Invertebr Pathol 16:268–276

    Article  Google Scholar 

  • Johnson PT, Chapman FA (1970b) Abnormal epithelial growth in sea urchin spines (Strongylocentrotusfranciscanus). J Invertebr Pathol 16:116–122

    Article  Google Scholar 

  • Kawaguti S (1965) Electron microscopy on the radial nerve of the starfish. Biol J Okayama Univ 11:41–52

    Google Scholar 

  • Kawaguti S, Kamishima Y (1964a) Electron microscopic study on the integument of the echinoid, Diadema setosum. Annot Zool Jpn 37:147–152

    Google Scholar 

  • Kawaguti S, Kamishima Y (1964b) Electron microscopic structure of iridophores of an echinoid, Diaeima setosum. Biol Okayama Univ 10:13–22

    Google Scholar 

  • Laverack MS (1974) The structure and function of chemoreceptor cells. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic Press, London New York, pp 1–48

    Google Scholar 

  • Lawrence JM, Dawes CJ (1969) Algal growth over the epidermis of sea urchin spines. J Phycol 5:269

    Article  Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256

    Article  PubMed  CAS  Google Scholar 

  • Lewis JB, Saluja G (1967) The claviform pedicellariae and their stalk glands in the tropical sea urchin Diadema antillarum Philippi. Can J Zool 45:1211–1214

    Article  Google Scholar 

  • Martinez JL (1976) Histologia y ultraestructura de 1a cuticula de los podios de Ophiothrix fragilis (Echinodermata, Ophiuroidea). Bol R Soc Esp Hist Nat Biol 74:167–181

    Google Scholar 

  • Martinez JL (1977) Estructura y ultraestructura del epitelio de los podios de Ophiothrix fragilis (Echinodermata, Ophuiroidea). Bol R Soc Esp Hist Nat Biol 75:275–301

    Google Scholar 

  • Menton DN, Eisen AZ (1970) The structure of the integument of the sea cucumber, Thy one briareus. J Morphol 131:17–36

    Article  Google Scholar 

  • Menton DN, Eisen AZ (1973) Cutaneous wound healing in the sea cucumber, Thy one briarius. J Morphol 141:185–204

    Article  PubMed  CAS  Google Scholar 

  • Millott N (1952) Colour change in the echinoid Diadema antellarum, Philippi. Nature 170:325–326

    Article  Google Scholar 

  • Millott N, Coleman R (1969) The podial pit — a new structure in the echinoid Diadema antillarum Philippi. Z Zeilforsch 95:187–197

    Article  CAS  Google Scholar 

  • Nichols D (1959) The histology of tube-feet and clavulae of Echinocardium cor datum. Q J Microsc Sci 100:73–87

    Google Scholar 

  • Nichols D (1960) The histology and activities of the tube-feet of Antedon bifida. Q J Microsc Sci 101:105–117

    Google Scholar 

  • Nichols D (1961) A comparative histological study of the tube-feet of two regular echinoids. Q J Microsc Sci 102:157–180

    Google Scholar 

  • Norrevang A, Wingstrand KG (1970) On the occurrence and structure of choanocyte-like cells in some echinoderms. Acta Zool (Stockholm) 51:249–270

    Article  Google Scholar 

  • O’Connell MG, Alender CB, Wood EM (1974) A fine structure study of venom gland cells in globiferous pedicellariae from Strongylocentrotus purpuratus (Stimpson). J Morphol 142:411–432

    Article  Google Scholar 

  • Oldfield SC (1975) Surface fine structure of the globiferous pedicellariae of the regular echinoid, Psammechinus miliaris Gmelin. Cell Tissue Res 162:377–385

    Article  PubMed  CAS  Google Scholar 

  • Penn PE (1981) Regeneration of the optic cushion in the tropical intertidal asteroid Nephanthia belcheri (Perrier). In: Abstr Int Echinoderms Conf, Tampa Bay, Sept 1981

    Google Scholar 

  • Penn PE, Alexander GC (1980) Fine structure of the optic cusion [sic] in the asteroid Nephanthia belcheri. Mar Biol 58:251–256

    Article  Google Scholar 

  • Pentreath RJ (1970) Feeding mechanisms and the functional morphology of podia and spines in some New Zealand ophuiroids (Echinodermata). J Zool (London) 161:395–429

    Article  Google Scholar 

  • Pentreath VW, Cobb JLS (1972) Neurobiology of Echinodermata. Biol Rev 47:363–392

    Article  PubMed  CAS  Google Scholar 

  • Pentreath VW, Cobb JLS (1982) Echinodermata. In: Shelton GAB (ed) Electrical conduction and behaviour in “simple” invertebrates. Clarendon Press, Oxford, pp 440–472

    Google Scholar 

  • Péquignat E (1966) “Skin digestion” and epidermal absorption in irregular and regular urchins and their probable relation to the outflow of spherule-coelomocytes. Nature 210:397–399

    Article  Google Scholar 

  • Péquignat E (1972) Some new data on skin-digestion and absorption in urchins and sea stars (Asterias and Henricia). Mar Biol 12:28–41

    Google Scholar 

  • Pérpeet C, Jangoux M (1973) Contribution á l’étude des pieds et des ampoules ambulacraires & Asterias rubens (Echinodermata, Asteroidea). Forma Functio 6:191–209

    Google Scholar 

  • Radoicic T, Pentreath VW (1979) Invertebrate glia. Prog Neurobiol 12:115–179

    Article  Google Scholar 

  • Ramalingam K, Ravindranath MH, Krishnan R (1975) Histochemical studies of pedicellaria of an echinoid, Salmacis bicolor. Acta Histochem 52:222–230

    PubMed  CAS  Google Scholar 

  • Reichensperger A (1908) Über das Vorkommen von Drüsen bei Crinoiden. Zool Anz 33:363–367

    Google Scholar 

  • Schick JM, Edwards KC, Dearborn JH (1981) Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus: Ciliated surfaces and animal-sediment interactions. Mar Ecol Prog Ser 5:165–184

    Article  Google Scholar 

  • Souza Santos H (1965) Estudo da ultraestructura dos pés ambulacrários de Asterina stellifera (Hupé) Echinodermata Asteroidea. Bol Fac Fil Ci Letr Univ Säo Paulo Zool 25:175–300

    Google Scholar 

  • Souza Santos H (1966) The ultrastructure of the mucous granules from starfish tube feet. J Ultrastruct Res 16:259–268

    Article  Google Scholar 

  • Souza Santos H, Silva Sasso W (1970) Ultrastructural and histochemical studies on the epithelium revestment layer in the tube feet of the starfish Asterina stellifera. J Morphol 130:287–296

    Article  Google Scholar 

  • Souza Santos H, Silva Sasso W (1974) Ultrastructural and histochemical observations of the external epithelium of echinoderm tube feet. Acta Anat 88:22–33

    Article  Google Scholar 

  • Spicer SS (1963) Histochemical differentiation of mammalian mucopolysaccharides. Ann NY Acad Sci 106:379–388

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1974) Structure and function of intercellular junctions. Int Rev Cytol 39:191–283

    Article  PubMed  CAS  Google Scholar 

  • Stephens GC (1982) Recent progress in the study of “die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer.” Am Zool 22:611–619

    CAS  Google Scholar 

  • Stubbs TR, Cobb JLS (1982) A new ciliary feeding structure in an ophiuroid echinoderm. Tissue Cell 14:573–583

    Article  PubMed  CAS  Google Scholar 

  • Thomassin BA (1981) Sur la présence d’agrégats a l’extrémité des piquants de Diadema setosum (Echinoidea): comportement nutritionnel ou de nettoyage? Téthys 10:97–100

    Google Scholar 

  • Vanfleteren JR (1982) A monophyletic line of evolution? Ciliary induced photoreceptor membranes. In: Westfall JA (ed) Visual cells in evolution. Raven Press, New York, pp 107–136

    Google Scholar 

  • Vaupel-von Harnack M (1963) Über den Feinbau des Nervensystems des Seesternes (Asterias ubens L.). III. Die Struktur der Augenpolster. Z Zellforsch 60:432–451

    Article  Google Scholar 

  • Warner GF, Woodley JD (1975) Suspension-feeding in the brittle-star Ophiothrix fragilis. J Mar Biol Assoc UK 55:199–210

    Article  Google Scholar 

  • Weber W, Dambach M (1972) Amöboid bewegliche Pigmentzellen im Epithel des Seeigels Centrostephanus longispinus. Ein neuartiger Farbwechselmechanismus. Z Zellforsch 133:87–102

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Dambach M (1974) Light-sensitivity of isolated pigment cells of the sea urchin Centrostephanus longispinus. Cell Tissue Res 148:437–440

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Gras H (1980) Ultrastructural observations on changes in cell shape in chromatopho-res of the sea urchin Centrostephanus longispinus. Cell Tissue Res 206:21–33

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Grosmann M (1977) Ultrastructure of the basiepithelial nerve plexus of the sea urchin, Centrostephanus longispinus. Cell Tissue Res 175:551–562

    Article  PubMed  CAS  Google Scholar 

  • Whitfield PJ, Emson RH (1983) Presumptive ciliated receptors associated with the fibrillar glands of the spines of the echinoderm Amphipholis squamata. Cell Tissue Res 232:609–624

    Article  PubMed  CAS  Google Scholar 

  • Woodley JD (1975) The behaviour of some amphiurid brittle-stars. J Exp Mar Biol Ecol 18:29–46

    Article  Google Scholar 

  • Yamamoto M, Yoshida M (1978) Fine structure of the ocelli of a synaptid holothurian, Opheodesoma spectabilis, and the effects of light and darkness. Zoomorphology 90:1–17

    Article  Google Scholar 

  • Yoshida M (1957) Spectral sensitivity of chromatophores in Diadema setosum (Leske). J Exp Biol 34:222–225

    CAS  Google Scholar 

  • Yoshida M (1966) Photosensitivity. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley Interscience, New York, pp 435–464

    Google Scholar 

  • Yoshida M, Ohtsuki H (1966) Compound ocellus of a starfish: its function. Science 153:197–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holland, N.D. (1984). Epidermal Cells. In: Bereiter-Hahn, J., Matoltsy, A.G., Richards, K.S. (eds) Biology of the Integument. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51593-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51593-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51595-8

  • Online ISBN: 978-3-642-51593-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics