Skip to main content

Multilevel Relaxation in Low-Level Computer Vision

  • Chapter
Multiresolution Image Processing and Analysis

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 12))

Abstract

Variational (cost minimization) and local constraint approaches are generally applicable to problems in low-level vision (e.g., computation of intrinsic images). Iterative relaxation algorithms are “natural” choices for implementation because they can be executed on highly parallel and locally connected processors. They may, however, require a very large number of iterations to attain convergence. Multilevel relaxation techniques converge much faster and are well suited to processing in cones or pyramids. These techniques are applied to the problem of computing optic flow from dynamic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. A. Narayanan, D. P. O’Leary, A. Rosenfeld: Image smoothing and segmentation by cost minimization, IEEE Trans. Systems, Man, Cybernetics SMC-12. 91–96 (1982)

    Google Scholar 

  2. W. E. L. Grimson: “A Computational Theory of Visual Surface Interpolation”, Artificial Intelligence Laboratory Memo 613, MIT (1981)

    Google Scholar 

  3. K. Ikeuchi: “Numerical Shape from Shading and Occluding Contour in a Single View”, Artificial Intelligence Laboratory Memo 566, MIT (1980)

    Google Scholar 

  4. K. Ikeuchi, B. K. P. Horn: Numerical shape from shading and occluding boundaries. Artificial Intelligence 17, 141–184 (1981)

    Article  Google Scholar 

  5. B. K. P. Horn, B. G. Schunck: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  6. L. A. Hageman, D. M, Young: Applied Iterative Methods (Academic Press, New York, 1981)

    Google Scholar 

  7. A. Brandt: “Multi-level adaptive techniques (MLAT) for partial differential equations: ideas and software”, in Mathematical Software III, ed. by J. R. Rice (Academic Press, New York, 1977), pp. 277–318

    Google Scholar 

  8. A. Brandt: Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. L. Tanimoto: “Regular hierarchical image and processing structures in machine vision”, in Computer Vision Systems, ed. by A. R. Hanson, E. M. Riseman (Academic Press, New York, 1978), pp. 165–174

    Google Scholar 

  10. S. Tanimoto, A. Klinger (eds.): Structured Computer Vision: Machine Perception through Hierarchical Computation Structures (Academic Press, New York, 1980)

    Google Scholar 

  11. A. R. Hanson, E. M. Riseman: “Processing cones: a computational structure for image analysis”, in Structured Computer Vision, ed. by S. Tanimoto, A. Klinger (Academic Press, New York, 1980), pp. 101–131

    Google Scholar 

  12. S. Tanimoto, T. Pavlidis: A hierarchical data structure for picture processing, Computer Graphics Image Processing 4, 104–119 (1975)

    Article  Google Scholar 

  13. A. Klinger, C. R. Dyer: Experiments on picture representation using regular decomposition. Computer Graphics Image Processing 5, 68–105(1976)

    Google Scholar 

  14. M. D. Kelly: “Edge detection in pictures by computer using planning”, in Machine Intelligence 6, ed. by B. Meitzer, D. Michie (Edinburgh University Press, Edinburgh, UK, 1971), pp. 379–409

    Google Scholar 

  15. R. Y. Wong, E. L. Hall: Sequential hierarchical scene matching, IEEE Trans. Computers C-27, 359–366 (1978)

    Article  MathSciNet  Google Scholar 

  16. D. Marr, T. Poggio: A computational theory of human stereo vision, Proco Royal Society (London) B204, 301–328 (1979)

    Article  Google Scholar 

  17. P. J. Burt: “Pyramid-based extraction of local image features with applications to motion and texture analysis,” in Proc. SPIE Conf. on Robotics and Industrial Inspection, San Diego, CA, 1982

    Google Scholar 

  18. D. G. Luenberger: Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973)

    MATH  Google Scholar 

  19. R. Courant, D. Hilbert: Methods of Mathematical Physics Vol. 1 (Interscience, New York, 1953)

    Google Scholar 

  20. D. Terzopolous: “Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representation”, Artificial Intelligence Laboratory Memo 671, MIT (1982)

    Google Scholar 

  21. M. Yachida: “Determining velocity map by 3-D iterative estimates”, in Proc. 7th Intl. Joint Conf. on Artificial Intelligence, Vancouver, BC, 1981, pp. 716–718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glazer, F. (1984). Multilevel Relaxation in Low-Level Computer Vision. In: Rosenfeld, A. (eds) Multiresolution Image Processing and Analysis. Springer Series in Information Sciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51590-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51590-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51592-7

  • Online ISBN: 978-3-642-51590-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics