Skip to main content

Lipid Flow Phenomena Between Liposomes, Lipoproteins and Cell Membranes; Applications in Drug Delivery

  • Conference paper
Liposome Dermatics

Part of the book series: Griesbach Conference ((GRIESBACH))

Abstract

The bilayer structure making up the physical boundary of the liposome bears a strong resemblance to the biological membranes forming the boundaries of cells and subcellular particles. Similarly, the extracellular lipid layers in the stratum corneum of the skin basically possess this bimolecular leaflet structure. Essentially half such a bilayer is found at the interface at the air-water interface in the lung and at the lipid-water interface of the surface of lipoprotein particles. In contrast to the bilayer, which separates two aqueous phases, these monolayers constitute the boundary between an aqueous and an air phase or an aqueous and a lipid phase, respectively. A fundamental difference between artificial (phospho)lipid membranes such as in liposomes and biological membranes is the presence in the latter of a host of membrane-spanning integral proteins as well as more loosely associated peripheral proteins. Proteins are likely to play an important role in interactions between biological membranes. Such interactions may, for example, lead to the induction of membrane fusion and lipid or protein exchange phenomena. During the interaction of liposomes with the membranous structures of the skin similar phenomena may be involved. In this paper observations will be discussed which have been made in our laboratories over the past few years and which may bear relevance to the understanding of such phenomena in which transfer of lipids between membranes plays a role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system, FEBS Lett 223, 42–46

    Article  PubMed  CAS  Google Scholar 

  2. Allen TM, Austin GA, Chonn A, Lin L, Lee KG (1991), Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta 1061, 56–64

    Article  PubMed  CAS  Google Scholar 

  3. Allen TM (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981, 27–35

    Article  PubMed  CAS  Google Scholar 

  4. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethyleneglycol) show prolonged circulation half lives in vivo. Biochim Biophys Acta 1066, 29–36

    Article  PubMed  CAS  Google Scholar 

  5. Damen J, Dijkstra J, Regts J, Scherphof GL (1980) Effect of lipoprotein-free plasma on the interaction of human plasma high density lipoprotein with egg yolk phosphatidylcholine liposomes. Biochim Biophys Acta 620, 90–99

    PubMed  CAS  Google Scholar 

  6. Damen J, Regts J, Scherphof GL (1981) Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins: dependence on cholesterol and phospholipid composition. Biochim Biophys Acta 665, 538–545

    PubMed  CAS  Google Scholar 

  7. Damen J, Regts J, Scherphof GL (1982) Transfer of [14phosphatidylcholine between liposomes and human plasma high density lipoprotein: partial purification of a transfer stimulating factor using a rapid transfer assay. Biochim Biophys Acta 712, 444–452

    PubMed  CAS  Google Scholar 

  8. Hashimoto K, Loader JE, Knight MS, Kinsky SC (1985) Inhibition of cell proliferation and dihydrofolate reductase by liposomes containing methotrexate-dimyristoyl-phosphatidylethanolamine derivatives and by the glycerophosphorylethanolamine analogs. Biochim Biophys Acta 816, 169–178

    Article  PubMed  CAS  Google Scholar 

  9. Hoekstra D, Tomasini R, Scherphof GL (1978) Interaction of phospholipid vesicles with rat hepatocyctes in primary monolayer culture. Biochim Biophys Acta 542, 456–469

    Article  PubMed  CAS  Google Scholar 

  10. Hoekstra D, Tomasini R, Scherphof GL (1980) Interactions of phospholipid vesicles with rat hepatocytes in vitro. Influence of vesicle-incorporated glycolipids. Biochim Biophys Acta 603, 336–346

    Article  PubMed  CAS  Google Scholar 

  11. Holmberg E, Maruyama K, Kennel S, Klibanov A, Torchilin VP, Ryan U, Huang L (1990) Target-specific binding of immunoliposomes in vivo. J Liposome Res 1, 393–406

    Article  CAS  Google Scholar 

  12. Hughes BJ, Kennel S, Lee R, Huang L (1989) Monocloncal antibody targeting of liposomes to mouse lung in vivo. Cancer Res 49, 6214–6220

    PubMed  CAS  Google Scholar 

  13. Kinsky SC, Loader JE (1987) Circumvention of the methotrexate transport system by methotrexate-phosphatidylethanolamine derivatives: effect of fatty acid chain length, Biochim Biophys Acta 921, 96–103

    PubMed  CAS  Google Scholar 

  14. Maruyama K, Mori A, Kennel SJ, Van Borssum Waalkes M, Scherphof GL, Huang L (1991) Drug delivery by organ-specific liposomes, in: Polymeric Drugs and Drug Delivery Systems (RL Dunn and RM Ottenbrite eds) Am Chem Soc pp 275–284

    Google Scholar 

  15. Klibanov A, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991) Activity of amphipathic poly(ethyleneglycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062, 142–148

    Article  PubMed  CAS  Google Scholar 

  16. Mori A, Klibanov AL, Torchilin VP, Huang L (1991) Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM, on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 284, 263–266

    Article  PubMed  CAS  Google Scholar 

  17. Papahadjopoulos D, Allan TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee K-D, Woodle MC, Lasic DD, Redemann C, Martin F (1991) Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88, 11460–11464

    Article  PubMed  CAS  Google Scholar 

  18. Roerdink FH, Regts J, Van Leeuwen B, Scherphof GL (1984) Intrahepatic uptake and processing of intravenously injected small unilamellar vesicles in rats. Biochim Biophys Acta 770, 195–202

    Article  PubMed  CAS  Google Scholar 

  19. Scherphof GL, Roerdink F, Waite M, Parks J (1978) Disintegration of phosphatidylcholine liposomes as a result of interaction with high density lipoproteins. Biochim Biophys Acta 542, 296–307

    Article  PubMed  CAS  Google Scholar 

  20. Scherphof GL, Morselt H (1984) On the size-dependent disintegration of small unilamellar phosphatidylcholine vesicles in rat plasma. Evidence of complete loss of vesicle structure. Biochem J 221, 423–429

    PubMed  CAS  Google Scholar 

  21. Scherphof GL, Van Leeuwen B, Wilschut J, Damen J (1983) Exchange of phosphatidylcholine between small unilamellar liposomes and human high density lipoprotein exclusively involves the phospholipid in the outer monolayer of the liposomal membrane. Biochim Biophys Acta 732, 595–599

    Article  PubMed  CAS  Google Scholar 

  22. Scherphof GL, Roerdink F, Dijkstra J, Ellens H, De Zanger R, Wisse E (1983) Uptake of liposomes by rat and mouse hepatocytes and Kupffer cells. Bio Cell 47, 47–58

    Google Scholar 

  23. Spanjer HH, Van Galen M, Roerdink FH, Regts J, Scherphof GL (1986) Intrahepatic distribution of small unilamellar liposomes as a function of liposomal lipid composition. Biochim Biophys Acta 863, 224–230

    Article  PubMed  CAS  Google Scholar 

  24. Van Borssum Waalkes M, Van Galen M, Morselt H, Sternberg B, Scherphof GL (submitted) In vitro stability and cytostatic activity of 5-fluoro-2′-deoxyuridine and lipophilic derivatives in liposomes.

    Google Scholar 

  25. Wu JR, Lentz BR (1991) Mechanism of poly(ethyleneglycol)-induced lipid transfer between phosphatidylcholine large unilamellar vesicles: a fluorescent probe study. Biochemistry 30, 6780–6787

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scherphof, G.L. et al. (1992). Lipid Flow Phenomena Between Liposomes, Lipoproteins and Cell Membranes; Applications in Drug Delivery. In: Braun-Falco, O., Korting, H.C., Maibach, H.I. (eds) Liposome Dermatics. Griesbach Conference. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48391-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48391-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55646-6

  • Online ISBN: 978-3-642-48391-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics