Skip to main content

Understanding the Genetic Structure of Plant Populations: Some Old Problems and a New Approach

  • Conference paper
Population Genetics in Forestry

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 60))

Abstract

The genetic structure of natural plant populations results from the interaction of selection, gene flow and genetic drift. Reviews of the plant allozyme literature demonstrate that the distribution of allozyme variation within and among plant populations is closely associated with the species’ mating system, pollination ecology and seed dispersal mechanism. Yet, there are relatively few species for which dependable estimates of the mating system or of pollen or seed dispersal are available.

Estimates of plant mating systems based on the mixed mating model have provided insights into the breeding structure of a few species. There are, however, relatively few data available on temporal and spatial variation in the mating system. Also, the assumptions of the mixed mating model are often violated in natural populations. Finally, the mixed mating model is limited in its ability to provide information about the breeding structure of populations.

Our understanding of gene flow via pollen or seed in natural populations is poor at best. Estimation procedures based on pollinator movements have underestimated pollen movement by not adequately dealing with pollen carryover and do not measure the effective movement of genes. Procedures using genetic markers, although giving a more accurate measure of pollen flow in natural or artificial populations typically produce results which are limited in scope and generalizations are difficult.

The use of paternity analysis to identify the father of individual seeds or seedlings removes many of the problems inherent to estimates of gene flow or the mating system. Although requiring considerable effort, paternity analysis can determine several genetic parameters that have previously been difficult or impossible to measure. From such analyses a detailed picture of the mechanisms which interact to produce the genetic structure of plant populations can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W. and P. L. Workman. 1963. Population studies in pedominantly self-pollinated species. IV. Seasonal fluctuations in estimated values of genetic parameters in lima bean populations. Evol. 17:470–480.

    Article  Google Scholar 

  • Bateman, A. J. 1947. Contamination in seed crops. III. Relation with isolation distance. Heredity 1:303–336.

    Article  Google Scholar 

  • Brown, A. H. D. 1979. Enzyme polymorphism in plant populations. Theor. Pop. BĂ®ol. 15:1–42.

    Article  Google Scholar 

  • Brown, A. H. D. and R. W. Allard. 1970. Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66:133–145.

    Google Scholar 

  • ChelĂ®ak, W. M. 1985. Temporal variation in the mating system of jack pine, Pinus barksiana. Genetics, in press.

    Google Scholar 

  • Clegg, M. T. 1980. Measuring plant mating systems. BioScience 30:814–818.

    Article  Google Scholar 

  • Clegg, M. T., A. L. Kahler, and R. W. Allard. 1978. Estimation of life cycle components of selection in an experimental plant population. Genetics 89:765–792.

    Google Scholar 

  • Ehrlich, P. R. and P. H. Raven. 1969. Differentiation of populations. Science 165:1228–1231.

    Article  Google Scholar 

  • Ellstrand, N. C. 1984. Multiple paternity within the fruits of the wild radish, Raphanus sativus. Am. Nat. 123:819–828.

    Article  Google Scholar 

  • Ennos, R. A. 1981. Quantitative studies of the mating system in two sympatric species of ipomoea (Convolvulaceae). Genetica 57:93–98.

    Article  Google Scholar 

  • Hagman, M. and L. Mikkola. 1963. Observations on cross-self-and inter-specific pollinations in pinus peuce Griseb. Silv. Genet. 12:73–79.

    Google Scholar 

  • Hamrick, J. L. 1982. Plant population genetics and evolution. Am. J. Bot. 1685–1693.

    Google Scholar 

  • Hamrick, J. L. and G. B. Griswold. In prep. Association between Slatkin’s measure of gene flow and the dispersal ability of plant species.

    Google Scholar 

  • HamrĂ®ck, J. L. and L. R. Holden. 1979. Influence of microhabĂ®tat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evolution 33:521–533.

    Article  Google Scholar 

  • Hamrick, J. L., Y. B. Linhart, and J. B. Mitton. 1979. Relationships between life history characteristics and electrophoretĂ®cally-detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10:173–200.

    Article  Google Scholar 

  • HamrĂ®ck, J. L. and C. C. Smith. In prep. Temporal variation in estimates of the mating system in lodgepole pine, Pinus contorta .

    Google Scholar 

  • HamrĂ®ck, J. L. and C. A. Smyth. In prep. Inter-and intraplant variation for estimates of the mating system in an experimental population of Carduus nutans.

    Google Scholar 

  • Handel, S. N. 1982. Dynamics of gene flow in an experimental population of Cucumis melo (Cucurbitaceae). Am. J. Bot. 69:1538–1546.

    Article  Google Scholar 

  • Lertzman, K. P. and C. L. Gass. 1983. Alternative models of pollen transfer. inHandbook of Experimental Pollination Biology, C. E. Jones and R. J. Little (eds.). Van Nostrand Reinhold, N.Y. pp. 474–489.

    Google Scholar 

  • Levin, D. A. and H. W. Kerster. 1968. Local gene disperal in Phlox. Evol. 22:130–139.

    Article  Google Scholar 

  • Levin, D. A. and H. W. Kerster. 1974. Gene flow in seed plants. Evol. Biol. 7:139–220.

    Google Scholar 

  • Lindgren, D. 1975. The relationship between self-fertilization, empty seeds and seeds originating from selfing as a consequence of polyembryony. Studia Forestalia Suecica Nr. 126.

    Google Scholar 

  • Linhart, Y. B., J. B. Mitton, K. B. Sturgeon and M. L. Davis. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46:407–426.

    Article  Google Scholar 

  • Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15:65–95.

    Article  Google Scholar 

  • Moran, G. F. and A. H. D. Brown. 1980. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delegatensis R. T. Bak.). Theor. Appl. Genet. 57:101–105.

    Article  Google Scholar 

  • MĂĽller, G. 1977. Cross-fertilization in a conifer stand inferred from enzyme gene-markers in seeds. Silv. Genet. 26:223–226.

    Google Scholar 

  • Phillips, M. A. and A. H. D. Brown. 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust. J. Biol. Sci. 30:337–344.

    Google Scholar 

  • Schaal, B. A. 1975. Population structure and local differentiation in Liatris cylindraceaeo Am. Nat. 109:511–528.

    Article  Google Scholar 

  • Schaal, B. A. 1980. Measurement of gene flow in Lupinus texensis Nature 284:450–451.

    Article  Google Scholar 

  • Schoen, D. J. and M. T. Clegg. 1984. Estimation of mating system parameters when outcrossĂŻng events are correlated. Proc. Nat. Acad. Sci. 81:5258–5262.

    Article  MATH  Google Scholar 

  • Silen, R. R. 1962. Pollen dispersal considerations for douglas-fir (Pseudotsuga menziesii). J. For. 60:790–795.

    Google Scholar 

  • Slatkin, M. 1981. Estimating levels of gene flow in natural populations. Genetics 99:323–335.

    Google Scholar 

  • Smith, C. C. and J. L. Hamrick. In prep. Experimental studies on the effects of selfing in lodgepole pine, Pinus contorta.

    Google Scholar 

  • Smyth, C. A. and J. L. Hamrick. In prep. Realized gene flow via pollen in artificial populations of musk thistle, Carduus nutans.

    Google Scholar 

  • Sorensen, F. C. 1982. The roles of polyembryonyonal embryo viability in the genetic system of conifers. Evol. 36:725–733.

    Article  Google Scholar 

  • Sorensen, F. C. and R. S. Miles. 1982. Inbreeding depression in height, height growth, and survival of douglas-fir, ponderosa pine, and nobile fir to 10 years of age. For. Sci. 28:283–292.

    Google Scholar 

  • Thomson, J. D. and R. C. Plowright. 1980. Pollen carryover, vector rewards, and pollinator behavior with special reference to Diervilla lonicera. Oecologia 46:68–74.

    Article  Google Scholar 

  • Turkington, R. and J. L. Harper. 1979. The growth, distribution and neighbour relationships of Trifolium repens in a permanent pasture. IV. Fine-scale biotic differentiation. J. Ecol. 67:245–254.

    Article  Google Scholar 

  • Turner, M. E., J. C. Stephens and W. W. Anderson. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc. Nat. Acad. Sci. 79:203–207.

    Article  Google Scholar 

  • Waser, N. M. and M. V. Price. 1982. A comparison of pollen and fluorescent dye carry-over by natural pollinators of ipomopsis aggregata . Ecology 63:1168–1172.

    Article  Google Scholar 

  • Willson, M. F. and N. Burley. 1983. Mate choice in plants. Tactics, mechanisms and consequences. Princeton University Press, Princeton, N.J. 251 pp.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.

    Google Scholar 

  • Wright, S. 1938. Size of population and breeding structure in relation to evolution. Science 87:430–431.

    Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann. Eugenics 15:323–354.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamrick, J.L., Schnabel, A. (1985). Understanding the Genetic Structure of Plant Populations: Some Old Problems and a New Approach. In: Gregorius, HR. (eds) Population Genetics in Forestry. Lecture Notes in Biomathematics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48125-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48125-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15980-3

  • Online ISBN: 978-3-642-48125-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics