Skip to main content

Molecular Epidemiology of Human Cancer

  • Conference paper
Genes and Environment in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 154))

Abstract

A challenging goal of molecular epidemiology is to identify an individual’s risk of cancer. Molecular epidemiology integrates molecular biology, in vitro and in vivo laboratory models, biochemistry and epidemiology to infer individual cancer risk. Molecular dosimetry of carcinogen exposure is an important facet of molecular epidemiology and cancer risk assessment. Carcinogen macromolecular adduct levels, cytogenetic alterations and somatic cell mutations can be measured to determine the biologically effective doses of carcinogens. Molecular epidemiology also explores host cancer susceptibilities, such as carcinogen metabolism, DNA repair, and epigenetic and genetic alterations in tumor suppressor genes. p53 is a prototype tumor suppressor gene and is well suited for analysis of mutational spectrum in human cancer. The analyses of germ line and somatic mutation spectra of the p53 tumor suppressor gene provide important clues for cancer risk assessment in molecular epidemiology. For example, characteristic p53 mutation spectra have been associated with: dietary aflatoxin B1 exposure and hepatocellular carcinoma; sunlight exposure and skin carcinoma; and cigarette smoking and lung cancer. The mutation spectrum also reveals those p53 mutants that provide cells with a selective clonal expansion advantage during the multistep process of carcinogenesis. The p53 gene encodes a multifunctional protein involved in the cellular response to stress including DNA damage and hypoxia. Certain p53 mutants lose tumor suppressor activity and gain oncogenic activity, which is one explanation for the commonality of p53 mutations in human cancer. Molecular epidemiological results can be evaluated for causation by inference of the Bradford-Hill criteria, i.e., strength of association (consistency, specificity and temporality) and biological plausibility, which utilizes the “weight of the evidence principle.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar F, Hussain SP, Cerutti P (1993) Aflatoxin B1 induces the transversion of G T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA, 90: 8586–8590

    Article  PubMed  CAS  Google Scholar 

  • Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P (1994) Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264: 1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Autrup H, Harris CC, Wu SM, Bao LY, Pei XF, Lu S, Sun TT, Hsia CC (1984) Activation of chemical carcinogens by cultured human fetal liver, esophagus and stomach. Chem. Biol. Interact 50: 15–25

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915

    Article  PubMed  CAS  Google Scholar 

  • Bazar LS, Deeg II (1992) Ultraviolet B-induced DNA fragmentation (apoptosis) in activated T-lymphocytes and Jurkat cells is augmented by inhibition of RNA and protein synthesis. Exp Hematol 20: 80–86

    PubMed  CAS  Google Scholar 

  • Brain R, Jenkins JR (1994) Human p53 directs DNA strand reassociation and is photolabelled by 8-azido ATP. Oncogene 9: 1775–1780

    PubMed  CAS  Google Scholar 

  • Brash DE (1988) UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 48: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Nati Acad Sci USA 88: 10124–10128

    Article  CAS  Google Scholar 

  • Bredberg A, Kraemer KH, Seidman MM (1986) Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc Natl Acad Sci USA 83: 8273–8277

    Article  PubMed  CAS  Google Scholar 

  • Bressac B, Kew M, Wands J, Ozturk M (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350: 429–431

    Article  PubMed  CAS  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557

    Article  PubMed  CAS  Google Scholar 

  • Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes [see comments]. Nature 370: 220–223

    Google Scholar 

  • Cariello NF, Cui L, Beroud C, Soussi T (1994) Database and software for the analysis of mutations in the human p53 gene. Cancer Res 54: 4454–4460

    PubMed  CAS  Google Scholar 

  • Chen PL, Chen Y, Bookstein R, Lee WH (1991) Genetic mechanisms of tumor suppression by the human p53 gene. Science 250: 1576–1580

    Article  Google Scholar 

  • Chen X, Farmer G, Zhu H, Prywes R, Prives C (1993) Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation [published erratum appears in Genes Dev 1993 Dec;7(12B):26521. Genes Dev 7: 1837–1849

    Article  PubMed  CAS  Google Scholar 

  • Cherpillod P, Amstad PA (1995) Benzo[a]pyrene-induced mutagenesis of p53 hot-spot codons 248 and 249 in human hepatocytes. Mol Carcinog 13: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Cox LS, Hupp T, Midgley CA, Lane DP (1995) A direct effect of activated human p53 on nuclear DNA replication. EMBO J 14: 2099–2105

    PubMed  CAS  Google Scholar 

  • Daya-Grosjean L, Dumaz N, Sarasin A (1995) The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B 28: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Del Sal G, Ruaro EM, Utrera R, Cole CN, Levine AJ, Schneider C (1995) Gasl-induced growth suppression requires a transactivation-independent p53 function. Mol Cell Biol 15: 7152–7160

    PubMed  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in GI checkpoint control. Cell 82: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274: 430–432

    Article  PubMed  CAS  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev 8: 2540–2551

    Article  PubMed  Google Scholar 

  • Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M, Bressac B, Ozturk M, Baker SJ, Vogelstein B (1990) p53 Functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10: 5772–5781

    Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ (1993) Gain of function mutations in p53. Nature [Genet] 4: 42–46

    Article  CAS  Google Scholar 

  • Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L (1993) Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients. Proc Natl Acad Sci USA 90: 10529–10533

    Article  PubMed  CAS  Google Scholar 

  • Dutta A, Ruppert JM, Aster JC, Winchester E (1993) Inhibition of DNA replication factor RPA by p53. Nature 365: 79–82

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 878–825

    Article  Google Scholar 

  • Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M (1989) Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86: 8763–8767

    Article  PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Levine AT (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Foord OS, Bhattacharya P, Reich Z, Rotter V (1991) A DNA binding domain is contained in the C-terminus of wild type p53 protein. Nucleic Acids Res 19: 5191–5198

    Article  PubMed  CAS  Google Scholar 

  • Forrester K, Lupold SE, Ott VL, Chay CH, Band V, Wang XW, Harris CC (1995) Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 10: 2103–2111

    PubMed  CAS  Google Scholar 

  • Gobert C, Bracco L, Rossi F, Olivier M, Tazi J, Lavelle F, Larsen AK, Riou JF (1996) Modulation of DNA topoisomerase I activity by p53. Biochemistry 35: 5778–5786

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878

    PubMed  CAS  Google Scholar 

  • Guillouf C, Rosselli F, Krishnaraju K, Moustacchi E, Hoffman B, Liebermann DA (1995) p53 Involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene 10: 2263–2270

    Google Scholar 

  • Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E, Harris CC, Montesano R (1997) Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 25: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816

    Article  PubMed  CAS  Google Scholar 

  • Harris CC (1991) Chemical and physical carcinogenesis: advances and perspectives for the 1990’s. Cancer Res 51: 5023s - 5044s

    PubMed  CAS  Google Scholar 

  • Harris CC (1996) The 1995 Walter Hubert Lecture–Molecular epidemiology of human cancer: in- sights from the mutational analysis of the p53 tumor suppressor gene. Br J Cancer 73: 261–269

    Article  PubMed  CAS  Google Scholar 

  • Harris CC, Grady H, Svoboda D (1968) Alterations in pancreatic and hepatic ultrastructure following acute cycloheximide intoxication. J Ultrastruct Res 22: 240–251

    Article  PubMed  CAS  Google Scholar 

  • Harris CC, Genta VM, Frank AL, Kaufman DG, Barrett LA, McDowell EM, Trump BF (1974) Carcinogenic polynuclear hydrocarbons bind to macromolecules in cultured human bronchi. Nature 252: 68–69

    Article  PubMed  CAS  Google Scholar 

  • Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M (1995) Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9: 2170–2183

    Article  PubMed  CAS  Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation. Proc R Soc Med 58: 295–300

    PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 Mutations in human cancers. Science 253: 49–53

    Google Scholar 

  • Hsia HC, Lebkowski JS, Leong PM, Calos MP, Miller JH (1989) Comparison of ultraviolet irradiation-induced mutagenesis of the lacl gene in Escherichia coli and in human 293 cells. J Mol Biol 205: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Hsiao M, Low J, Dorn E, Ku D, Pattengale P, Yeargin J, Haas M (1994) Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol 145: 702–714

    PubMed  CAS  Google Scholar 

  • Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350: 427–428

    Article  PubMed  CAS  Google Scholar 

  • Huang LC, Clarkin KC, Wahl GM (1996) Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci USA 93: 4827–4832

    Article  PubMed  CAS  Google Scholar 

  • Iizasa T, Momiki S, Bauer B, Caamano J, Metcalf R, Lechner J, Harris CC, Klein-Szanto Al (1993) Invasive tumors derived from xenotransplanted, immortalized human cells after in vivo exposure to chemical carcinogens. Carcinogenesis 14: 1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman L, Prives C (1995) Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey AM, Weinstein IB, Jennette KW, Grzeskowiak K, Nakanishi K, Harvey RG, Autrup H, Harris CC (1977) Structures of benzo(a)pyrene-nucleic acid adducts formed in human and bovine bronchial explants. Nature 269: 348–350

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Radin AI, Kuerbitz SJ, Onyekwere O, Wolkow CA, Civin CI, Stone KD, Woo T, Ravindranath Y, Craig RW (1991) Levels of p53 protein increase with maturation in human hematopoietic cells. Cancer Res 51: 4279–4286

    PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 71: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Klein-Szanto AJ, Iizasa T, Momiki S, Garcia-Palazzo I, Caamano J, Metcalf R, Welsh J, Harris CC (1992) A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells. Proc Natl Acad Sci USA 89: 6693–6697

    Article  PubMed  CAS  Google Scholar 

  • Kress S, Sutter C, Strickland PT, Mukhtar H, Schweizer J, Schwarz M (1992) Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52: 6400–6403

    PubMed  CAS  Google Scholar 

  • Lane DP, Benchimol S (1990) p53: oncogene or anti-oncogene. Genes Dev 4: 1–8

    Google Scholar 

  • Lee S, Elenbase B, Levine A, Griffith J (1995) p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81: 1013–1020

    Google Scholar 

  • Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B (1996) Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 15: 1615–1624

    PubMed  CAS  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351: 453–456

    Article  PubMed  CAS  Google Scholar 

  • Li D, Cao Y, He L, Wang NJ, Gu J (1993) Aberrations of p53 gene in human hepatocellular carcinoma from China. Carcinogenesis 14: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Li FP, Garber JE, Friend SH, Strong LC, Patenaude AF, Juengst ET, Reilly PR, Correa YP, Fraumeni JF Jr (1992) Recommendations on predictive testing for germ line p53 mutations among cancer-prone individuals. J Natl Cancer Inst 84: 1156–1160

    Article  PubMed  CAS  Google Scholar 

  • Li R, Waga S, Hannon GJ, Beach D, Stillman B (1994) Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371: 534–537

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Miller CW, Koeffler PH, Berk AJ (1993) The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13: 3291–3300

    PubMed  CAS  Google Scholar 

  • Ljungman M, Zhang F (1996) Blackage of RNA polymerase as a possible trigger for UV light-induced apoptosis. Oncogene

    Google Scholar 

  • Lu X, Lane DP (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75: 765–778

    Article  PubMed  CAS  Google Scholar 

  • Mace K, Aguilar F, Wang JS, Vautravers P, Gomez-Lechon M, Gonzalea FJ, Groopman J, Harris CC, Pfeifer AMA (1997) Aflatoxin B1 induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 18: 1291–1297

    Article  PubMed  CAS  Google Scholar 

  • Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694

    PubMed  CAS  Google Scholar 

  • Martin SJ (1993) Protein or RNA synthesis inhibition induces apoptosis of mature human CD4+ T cell blasts. Immunol Lett 35: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Mercer WE, Shields MT, Amin M, Sauve GJ, Appella E, Romano JW, Ullrich SJ (1990) Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87: 6166–6170

    Article  PubMed  CAS  Google Scholar 

  • Miller SD, Farmer G, Prives C (1995) p53 inhibits DNA replication in vitro and in a DNA-bindingdependent manner. Mol Cell Biol 15: 6554–6560

    Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bd-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805

    PubMed  CAS  Google Scholar 

  • Nakazawa H, English D, Randell PL, Nakazawa K, Martel N, Armstrong BK, Yamasaki H (1994) UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci USA 91: 360–364

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (1994) Science and judgement in risk assessment: assessment of toxicology. National Academy Press, Washington, DC, pp 56–67

    Google Scholar 

  • Nelson WG, Kastan MB (1994) DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14: 1815–1823

    PubMed  CAS  Google Scholar 

  • Oberosler P, Hloch P, Ramsperger U, Stahl H (1993) p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J 12: 2389–2396

    Google Scholar 

  • Park M, Van de Woude GF (1989) Cancer. In: DeVita VT Jr, Hellman S et al (eds) Principles of molecular cell biology of cancer: oncogenes, 3rd edn. Lippincott, New York, pp 45–66 (Principles and practice of oncology)

    Google Scholar 

  • Perera FP (1996) Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst 88: 496–509

    Article  PubMed  CAS  Google Scholar 

  • Perera FP, Santella R (1993) Molecular epidemiology. In: Schulte P, Perera FP (eds) Principles and practices: carcinogenesis. Academic, New York, pp 277–300

    Google Scholar 

  • Pfeifer AMA, Cole KE, Smoot DT, Weston A, Groopman JD, Shields PG, Vignaud J-M, Juillerat M, Lipsky MM, Trump BF, Lechner JF, Harris CC (1993) SV40 T-antigen immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci USA 90: 5123–5127

    Article  PubMed  CAS  Google Scholar 

  • Ponchel F, Puisieux A, Tabone E, Michot JP, Froschl G, Morel AP, Frebourg T, Fontaniere B, Oberhammer F, Ozturk M (1994) Hepatocarcinoma-specific mutant p53–249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. Cancer Res 54: 2064–2068

    PubMed  CAS  Google Scholar 

  • Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S (1995) Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55: 1643–1648

    PubMed  CAS  Google Scholar 

  • Puisieux A, Lim S, Groopman J, Ozturk M (1991) Selective targeting of p53 gene mutational hot-spots in human cancers by etiologically defined carcinogens. Cancer Res 51: 6185–6189

    PubMed  CAS  Google Scholar 

  • Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P (1995) The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 92: 9455–9459

    Article  PubMed  CAS  Google Scholar 

  • Sakamuro D, Eviner V, Elliott KJ, Showe L, White E, Prendergast GC (1995) c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11: 2411–2418

    Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Scorsone KA, Zhou YZ, Butel JS, Slagle BL (1992) p53 Mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res 52: 1635–1638

    Google Scholar 

  • Sekiguchi T, Nakashima T, Hayashida T, Kuraoka A, Hashimoto S, Tsuchida N, Shibata Y, Hunter T, Nishimoto T (1995) Apoptosis is induced in BHK cells by the tsBN462/13 mutation in the CCG1/TAFII250 subunit of the TFIID basal transcription factor. Exp Cell Res 218: 490–498

    Article  PubMed  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D (1994) Immediate early up-regulation of box expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798

    PubMed  CAS  Google Scholar 

  • Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89: 12028–12032

    Article  PubMed  CAS  Google Scholar 

  • Shields PG, Harris CC (1991) Molecular epidemiology and the genetics of environmental cancer. JAMA 266: 681–687

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace Ai Jr (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Soini Y, Chia SC, Bennett WP, Groopman JD, Wang JS, DeBenedetti VM, Cawley H, Welsh JA, Hansen C, Bergasa NV, Jones EA, DiBisceglie AM, Trivers GE, Sandoval CA, Calderon IE, Munoz Espinosa LE, Harris CC (1996) An aflatoxin-associated mutational hotspot at codon 249 in the p53 tumor suppressor gene occurs in hepatocellular carcinomas from Mexico. Carcinogenesis 17: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5: 945–952

    PubMed  CAS  Google Scholar 

  • Takeshima Y, Seyama T, Bennett WP, Akiyama M, Tokuoka S, Inai K, Mabuchi K, Land CE, Harris CC (1993) p53 Mutations in lung cancers from non-smoking atomic-bomb survivors. Lancet 342: 1520–1521

    Google Scholar 

  • Tornaletti S, Rozek D, Pfeifer GP (1993) The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer [published erratum appears in Oncogene 1993 Dec; 8(12):3469]. Oncogene 8: 2051–2057

    PubMed  CAS  Google Scholar 

  • Truant R, Xiao H, Ingles CJ, Greenblatt J (1993) Direct interaction between the transcriptional ac- tivation domain of human p53 and the TATA box-binding protein. J Biol Chem 268: 2284–2287

    PubMed  CAS  Google Scholar 

  • Vahakangas KH, Samet JM, Metcalf RA, Welsh JA, Bennett WP, Lane DP, Harris CC (1992) Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 339: 576–580

    Article  PubMed  CAS  Google Scholar 

  • Wagner AJ, Kokontis JM, Hay N (1994) Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p2lwaf1/cipl. Genes Dev 8: 2817–2830

    Article  PubMed  CAS  Google Scholar 

  • Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Nail Acad Sci USA 91: 2230–2234

    Article  CAS  Google Scholar 

  • Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Sturzbecher HW, Hoeijmakers JHJ, Harris CC (1995a) Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 55: 6012–6016

    PubMed  CAS  Google Scholar 

  • Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Friedberg EC, Evans MK, Taffe BG, Bohr VA, Hoeijmakers JH, Forrester K, Harris CC (1995b) p53 Modulation of TFIIHassociated nucleotide excision repair activity. Nature [Genet] 10: 188–195

    Google Scholar 

  • Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JHJ, Harris CC (1996) The XPB and XPD helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10: 1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, Ingles CJ, Greenblatt J (1994) Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14: 7013–7024

    PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    Google Scholar 

  • Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature 372: 773–776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Hussain, S.P., Harris, C.C. (1998). Molecular Epidemiology of Human Cancer. In: Schwab, M., Rabes, H.M., Munk, K., Hofschneider, H.P. (eds) Genes and Environment in Cancer. Recent Results in Cancer Research, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46870-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46870-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46872-8

  • Online ISBN: 978-3-642-46870-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics