Skip to main content

A Clustering Technique for Maximizing φ-Divergence, Noncentrality and Discriminating Power

  • Conference paper
Analyzing and Modeling Data and Knowledge

Abstract

The χ 2 goodness-of-fit test for the hypothesis H 0: P = P 0 (a distribution with density f 0(x)) is using an m-partition C = {C l,..., C m } of the sample space and checks for the hypothetical class probabilities P 0(C 1),..., P 0(C m ). The asymptotic power performance of this test is characterized by the noncentrality parameter δ C 2(P 1, P 0) = ∑ i =1 m(P 1(C i )−P 0(C i ))2/P 0(C i ) where P 1 is a given alternative distribution. In this paper, we show how an optimally efficient partition C, i.e. with a maximum value δ C 2(P 1, P 0) can be obtained (for a given number m of classes). — In fact, this problem can be embedded into the general framework of maximizing a ø-divergence measure I C (P 1, P 0; ø) over all m-partitions C of R P (where ø(∙) is a convex function on R 1). Our algorithm is an adaptation of the well-known k-means clustering technique and uses the support lines of ø. Since ø-divergence measures characterize, quite generally, the performance of tests for distinguishing between two alternatives P 0 and P 1 (e.g. in the NeymanPearson or a Bayesian framework) the given methods can be used for obtaining partitions with a maximum discriminating power for the resulting discretized distributions P 0(C i ), P1(C i ), i = 1,..., m. A series of numerical examples is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • BAHADUR, R.R. (1967), Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38, 303–325.

    Article  Google Scholar 

  • BEN-BASSAT, M. (1982), Use of distance measures, information measures and error bounds in feature evaluation, in: Classification, pattern recognition and reduction of dimensionality, eds. P.R. Krishnaiah, L.N. Kanal, North Holland, Amsterdam, 773–791.

    Google Scholar 

  • BEST, D.J., and RAYNER, J.C. (1981), A note on Mineo’s grouping method for the chi-square test of goodness-of-fit, Scand. J. Statist. 8, 185–186.

    Google Scholar 

  • BHATTACHARYYA, A. (1943), On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Society 35, 99–110.

    Google Scholar 

  • BOCK, H.H. (1974), Automatische Klassifikation, Theoretische und praktische Methoden zur Gruppierung und Strukturierung von Daten (Clusteranalyse), Vandenhoeck & Ruprecht, Göttingen, 480.

    Google Scholar 

  • BOCK, H.H. (1983), A clustering algorithm for choosing optimal classes for the chi-square test, Bull. 44th Session of the International Statistical Institute, Madrid, Contributed papers, Vol. 2, 758–762.

    Google Scholar 

  • CHERNOFF, H. (1952), A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. 23, 493–507.

    Article  Google Scholar 

  • CHERNOFF, H. (1956), Large sample theory, Parametric case, Ann. Math. Statist. 27, 1–22.

    Article  Google Scholar 

  • CSISZAR, L. (1967a), Information-type measures of difference of probability distributions and indirect observations, Studia Scientiarum Mat hematicarum Hungarica 2, 299–318.

    Google Scholar 

  • CSISZAR, I. (1967b), On topological properties of f-divergences, Studia Scientarum Mathematicarum Hungarica 2, 329–339.

    Google Scholar 

  • FLURY, B.A. (1990), Principal points, Biometrika 77, 33–42.

    Article  Google Scholar 

  • FUKUNAGA, K. (1972), Introduction to statistical pattern recognition, Academic Press, New York.

    Google Scholar 

  • HELLINGER, E. (1909), Neue Begründung der Theorie quadratischer Formen von unendlich vielen Veränderlichen, J. Reine Angew. Math. 136, 210–271.

    Article  Google Scholar 

  • IBRAGIMOV, I.A., and HAS’MINSKII, R.Z. (1981), Statistical estimation —Asymptotic theory, Springer, New York.

    Google Scholar 

  • KAILATH, T. (1967), The divergence and Bhattacharyya distance measures in signal detection, IEEE Trans. Computers COM, 15, 52–60.

    Article  Google Scholar 

  • KAMPS, U. (1989), Hellinger distances and a—entropy in a one-parameter class of density functions, Statistical Papers 30, 263–269.

    Article  Google Scholar 

  • KENDALL, M.G., and STUART, A. (1961), The advanced theory of statistics 2. Griffin, London.

    Google Scholar 

  • KOEHLER, K.J., and GAN, F.F. (1990), Chi-squared goodness-of-fit tests, Cell selection and power, Commun. Statist.–Simul. and Comput. 19, 1265–1278.

    Article  Google Scholar 

  • KOTZ, S., and JOHNSON, N.L. (1982) Encyclopedia of statistical sciences, Vol. 1, Wiley, New York.

    Google Scholar 

  • KOTZ, S., and JOHNSON, N.L. (1983) Encyclopedia of statistical sciences, Vol. 4, Wiley, New York.

    Google Scholar 

  • KRAFFT, O., and PLACHKY, D. (1970), Bounds on the power of likelihood ratio tests and their asymptotic properties, Ann. Math. Statist. 41, 1646–1654.

    Article  Google Scholar 

  • KULLBACK, S. (1959), Information theory and statistics, Wiley, New York.

    Google Scholar 

  • KULLBACK, S., and LEIBLER, R. (1951), On information and sufficiency. Ann. Math. Statist. 22, 79–86.

    Article  Google Scholar 

  • LE CAM, L. (1986), Asymptotic methods in statistical decision theory, Springer, New York - Heidelberg.

    Book  Google Scholar 

  • MANN, H.B., and WALD, A. (1942), On the choice of the number of class intervals in the application of the chi-square test, Ann. Math. Statist. 13, 206–317.

    Google Scholar 

  • MATUSITA, K. (1955), Decision rules, based on the distance, for problems of fit, two samples, and estimation, Ann. Math. Statist. 26, 631–640.

    Article  Google Scholar 

  • MATUSITA, K. (1964), Distance and decision rules, Ann. Inst. Statist. Math. 16, 305–320.

    Article  Google Scholar 

  • MINEO, A. (1979), A new grouping method for the right evaluation of the chi-square test of goodness-of-fit, Scand. J. Statist. 6, 145–153.

    Google Scholar 

  • MINEO, A. (1981), Rejoinder to Best and Rayner’s, A note on Mineo’s grouping method for the chi-square test of goodness-of-fit, Scand. J. Statist. 8, 187–188.

    Google Scholar 

  • MOORE, D.S., and SPRUILL, M.C. (1975), Unified large-sample theory of general chi-squared statistics for tests of fit, Ann. Statist. 3, 599–616.

    Google Scholar 

  • RÉNYI, A. (1961), On measures of entropy and information, Proc. 4th Berkely Symp. Math. Statist. Probab., Vol. 1, Berkeley, 547–561.

    Google Scholar 

  • SERFLING, R.J. (1980), Approximation theorems of mathematical statistics, Wiley, New York, 132–140.

    Google Scholar 

  • SPRUILL, M.C. (1976), Cell selection in the Chernoff-Lehmann chi-square statistics, Ann. Statist. 4, 375–383.

    Article  Google Scholar 

  • SPRUILL, M.C. (1977), Equally likely intervals in the chi-square test, Sankhya A 39, 299–302.

    Google Scholar 

  • VAJDA, I. (1989), Theory of statistical inference and information, Kluwer, Dordrecht.

    Google Scholar 

  • VAJDA, I. (1970), On the amount of information contained in a sequence of observations, Kybernetica 6, 306–323.

    Google Scholar 

  • WITTING, H. (1959), Über einen χ2-Test, dessen Klassen durch geordnete Stichprobenfunktionen festgelegt werden, Ark. Mat. 10, 468–479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Bock, H.H. (1992). A Clustering Technique for Maximizing φ-Divergence, Noncentrality and Discriminating Power. In: Schader, M. (eds) Analyzing and Modeling Data and Knowledge. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46757-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46757-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54708-2

  • Online ISBN: 978-3-642-46757-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics