Skip to main content

Monamine Oxidase

  • Chapter
Catecholamines I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 1))

Abstract

The enzyme monoamine oxidase (amine: oxygen oxidoreductase (deaminating) EC 1.4.3.4.) (MAO) catalyses the oxidative deamination of amines according to the overall reaction:

$$RC{{H}_{2}}N{{H}_{2}}+{{O}_{2}}+{{H}_{2}}O\to RCHO+N{{H}_{3}}+{{H}_{2}}{{O}_{2}}$$

It is present in the central nervous system as well as in peripheral tissues, and it functions in the breakdown of neurotransmitter and hormonal amines as well as those aristing from the diet or from bacterial action. The history of its discovery and the earlier work on its properties have been described in detail (see e.g., Blaschko 1952, 1963; Tipton 1975; Youdim 1975, Kinemuchi et al. 1987) and this review will concentrate on the knowledge gained from more recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achee FM, Gabay S (1977) Studies on monoamine oxidaseinhibition of bovine brain MAO in intact mitochondria by selective inhibitors. Biochem Pharmacol 26: 1637–1644

    PubMed  CAS  Google Scholar 

  • Achee FM, Gabay S (1981) Studies of monoamine oxidases. Effect of Triton X-100 and bile salts on monoamine oxidase in brain mitochondria. Biochem Pharmacol 30: 3151–3157

    PubMed  CAS  Google Scholar 

  • Achee FM, Gabay S, Tipton KF (1977) Some aspects of monoamine oxidase activity in brain. Progr Neurobiol 8: 325–348

    CAS  Google Scholar 

  • Agarwal DP, Goedde HW, Schrappe 0 (1979) Blood platelet monoamine oxidase activity in schizophrenia, affective disorders and alcoholism. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 397–402

    Google Scholar 

  • Agid Y, Javoy F, Youdim MBH (1973) Monoamine oxidase and aldehyde dehydrogenase activity in the striatum of rats after 6-hydroxy dopamine lesion of the nigrostriatal pathway. Br J Pharmacol 48: 175–179

    PubMed  CAS  Google Scholar 

  • Aleyassine H, Gardiner RJ (1975) Dual action of anti-depressant drugs (MAO inhibitors) on insulin release. Endocrinology 96: 702–710

    PubMed  CAS  Google Scholar 

  • Antelman SM, Edwards DJ, Lin M (1977) Phenylethylamine: evidence for a direct postsynaptic dopamine receptor stimulating action. Brain Res 127: 317–324

    PubMed  CAS  Google Scholar 

  • Aoki S, Manabe T, Okuyama T (1977) Molecular weight estimation of bovine brain mitochondrial monoamine oxidase. J Biochem 82: 1533–1539

    PubMed  CAS  Google Scholar 

  • Ashkenazi R, Finberg JPM, Youdim MBH (1983) Behavioural hyperactivity in rats treated with selective monoamine oxidase inhibitors and LM 5008, a selective 5-hydroxytryptamine uptake blocker. Br J Pharmacol 79: 765–770

    PubMed  CAS  Google Scholar 

  • Baker SP, Hemsworth BA (1978) Effect of phospholipid depletion by phospholipases on the properties and formation of the multiple monoamine oxidase forms in the rat liver. Eur J Biochem 92: 165–174

    PubMed  CAS  Google Scholar 

  • Bakhle YS, Youdim MBH (1976) Metabolism of phenylethylamine in rat isolated per-fused lung: evidence for monoamine oxidase ‘type B’ in lung. Br J Pharmacol 56: 125–127

    PubMed  CAS  Google Scholar 

  • Bakhle YS, Youdim MBH (1979) The metabolism of 5-hydroxytryptamine and phen-ylethylamine in perfused rat lung and in vitro. Br J Pharmacol 65: 147–154

    PubMed  CAS  Google Scholar 

  • Belleau B, Burba J (1960) Stereochemistry of the enzymic decarboxylation of amino acids. J Am Chem Soc 82: 5751–5752

    CAS  Google Scholar 

  • Belleau B, Moran J (1963) Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase. Ann N Y Acad Sci 107: 822–839

    PubMed  CAS  Google Scholar 

  • Belleau B, Fang M, Burba J, Moran J (1960) The absolute optical specificity of monoamine oxidase. J Am Chem Soc 82: 5752–5754

    CAS  Google Scholar 

  • Ben-Harari RR, Pelleg R, Youdim MBH (1982) Uptake and deamination of non-polar amines by isolated perfused liver and lung. Br J Pharmacol 76: 77–85

    PubMed  CAS  Google Scholar 

  • Berger PA (1977) Antidepressant medications and the treatment of depression. In: Barchas JD, Berger PA, Ciaranello RD, Elliott GR (eds) Psychopharmacologyfrom Theory to Practice. Oxford University Press New York, pp 174–207

    Google Scholar 

  • Berkowitz BA, Tarver JJ, Spector S (1974) Control of norepinephrine synthesis in blood vessels and the effects of monoamine oxidase inhibition. J Pharmac Exp Ther 190: 21–29

    CAS  Google Scholar 

  • Bernheim MLC (1931) Tyramine oxidase II. The course of the oxidation. J Biol Chem 299–309

    Google Scholar 

  • Bevan Jones AB, Pare CMB, Nicholson WJ, Price K, Stacey RS (1972) Brain amine concentration after monoamine oxidase inhibitor administration. Br Med J i 17–19

    Google Scholar 

  • Biegon A, Segal M, Samuel D (1979) Sex differences in behavioural and thermal responses to pargyline and tryptophan. Psychopharmacologia 61: 77–80

    CAS  Google Scholar 

  • Biel JH (1970) Monoamine oxidase inhibitor antidepressants. Structure activity relationships. In: Clark WG, del Gundice J (eds) Principles of Psychopharmacology. Academic Press New York, pp 279–287

    Google Scholar 

  • Biel JH, Horita A, Drukker AE (1964) Monoamine oxidase inhibitor (hydrazines). In: Gordon M (eds) Psychopharmacological Agents Academic Press New York, pp 359–445

    Google Scholar 

  • Birkmayer W, Hornykiewicz 0 (1962) Der L-dioxyphenylalanin (L-dopa)-Effekt beim Parkinson-Syndrom des Menschen. Arch Psychiat Nervenkr 203: 560–574

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1976) Advances in Parkinsonism. Basel: Editions Roche treatment of Parkinsonism. J Neural Transmis 43: 177–286

    Google Scholar 

  • Birkmayer W, Yahr M (1978) Deprenyl, an inhibitor of MAO-type B in the treatment of Parkinsonism. J Neural Transmis 43: 177–286

    Google Scholar 

  • Birkmayer W, Riederer P, Youdim MBH, Linauer W (1975) Potentiation of anti-akinetic effect after L-dopa treatment by an inhibitor of MAO-B—deprenyl. J Neural Transmis 36: 303–323

    CAS  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L, Youdim MBH (1977) Implications of combined treatment with ‘Madopar’ and L-deprenyl in Parkinson’s disease. A long term therapy Lancet 1: 439–444

    CAS  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MBH (1979) Distrinction between benign and malignant type of Parkinson’s disease Clin Neurol Neurosurg 81–3: 158–164

    Google Scholar 

  • Birkmayer W, Riederer P, Youdim MBH (1982) Deprenyl in the treatment of Parkinson’s disease. Clin Neuropharmacol. 5: 195–230

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of 1-deprenyl to Madopar treatment in Parkinson’s disease: A longterm study. J Neural Transm is 64: 113–127

    CAS  Google Scholar 

  • Blaschko H (1952) Amine oxidase and amine metabolism. Pharmac Rev 4:415–453 Blaschko H (1963) Amine oxidase. In: Boyer PD, Lardy H, Myrbäck K (eds) The Enzymes. 2nd ed vol 8 Academic Press New York, pp 337–351

    Google Scholar 

  • Blaschko H (1974) The natural history of amine oxidases. Rev Physiol Biochem Pharmacol 70: 84–148

    Google Scholar 

  • Bloom FE, Giarman NJ (1968) Physiologic and pharmacologic consideration of bio-genic amines in the nervous system. Ann Rev Pharmacol 8: 229–247

    PubMed  CAS  Google Scholar 

  • Boadle MC, Bloom FE (1969) A method for the fine structural localization of monoamine oxidase. J Histochem Cytochem 17: 331–340

    PubMed  CAS  Google Scholar 

  • Boakes AJ, Laurence DR, Teoh PC, Barar FSK, Benedikter LT, Prichard BNC (1973) Interactions between sympathomimetic amines and antidepressant agents in man Br Med J i 311–315

    Google Scholar 

  • Boullin DG (1978) Biochemical indicators of central serotonin function. In: Serotonin and Mental Abnormalities. Wiley, Chichester system. Int Rev Biochem 26: 179–206

    Google Scholar 

  • Boulton AA (1979) Trace amines in the central nervous system. Int Rev Biochem 26: 179–206

    CAS  Google Scholar 

  • Boume R, Lai JCK, Owen F (1975) Monoamine oxidase activity in distinct populations of rat brain mitochondria. Br J Pharmacol 55: 298 P

    Google Scholar 

  • Braestrup C, Andersen H, Randrup A (1975) The monoamine oxidase B inhibitor deprenyl potentiates phenylethylamine behaviour in rats without inhibition of catecholamine metabolite formation. Eur J Pharmacol 34: 181–187

    PubMed  CAS  Google Scholar 

  • Brandao F, Rodrigues-Pereira E, Guilherme Monteiro J, Osswald W (1980) Characteristics of tyramine induced release of noradrenaline: mode of action of tyramine and metabolic fate of the transmitter. Naunyn-Schmiedeborg’s Arch Pharmacol 311: 9–15

    CAS  Google Scholar 

  • Brockington I, Crow TJ, Johnstone EC, Owen F (1976) An investigation of platelet monoamine oxidase activity in schizophrenia and schizoaffective psychosis. Ciba Found. Symp. 39 ( New Ser) Amsterdam: Elsevier Amsterdam

    Google Scholar 

  • Brodie BB, Tomich EG, Kuntzman R, Shore PA (1957) On the mechanism of action of reserpine. Effects of reserpine on capacity of tissue to bind serotonin. J Pharmacol Exp Ther 119: 461–465

    PubMed  CAS  Google Scholar 

  • Brown GK, Powell JF, Craig IW (1981) Molecular weight differences between human Platelet and placental monoamine oxidase. Biochem Pharmacol 29: 2595–2603

    Google Scholar 

  • Brown GK, Powell JF, Graig IW (1982) Immunological studies of human monoamine oxidase. J Neurochem 39: 1266–1270

    PubMed  CAS  Google Scholar 

  • Brown LE, Hamilton GA (1970) Some model reactions and a general mechanism for flavoenzyme-catalyzed dehydrogenations. J Amer Chem Soc 92: 7225–7227

    CAS  Google Scholar 

  • Brunner G, Neupert W (1968) Turnover of outer and inner membrane proteins of rat liver mitochondria. FEBS Lett 1: 153–155

    PubMed  CAS  Google Scholar 

  • Buffoni F (1966) Histaminase and related amine oxidases. Pharmacol Rev 18: 1163–1199

    PubMed  CAS  Google Scholar 

  • Callingham BA (1984) In vitro pharmacology of reversible inhibitors of monoamine oxidase. In: Paton W, Mitchell J, Turner P (eds) IUPHAR 9th Inter Cong. Pharmac vol 2 Macmillan London, pp 211–218

    Google Scholar 

  • Callingham BA (1977) Substrate selective inhibition of monoamine oxidase by mexiletine. Br J Pharmacol 61: 118–119 P

    Google Scholar 

  • Callingham BA, Parkinson D (1979) Tritiated pargyline binding to rat liver mitochondrial MAO. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 81–86

    Google Scholar 

  • Caine DB, Reid JL (1973) Actions of levodopa on the blood pressure of conscious rabbits. Br J Pharmacol 48: 194–197

    Google Scholar 

  • Campbell I, Murphy DL, Callagher DW, Tallman JW, Marshall FE (1979) Neurotransmitter-related adaption in the central nervous system following chronic monoamine oxidase inhibition. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase; Structure Function and Altered Functions, Academic Press New York, pp 517–530

    Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127: 471–472

    PubMed  CAS  Google Scholar 

  • Carman JS, Gillin JC, Murphy DL, Weinberger DR, Kleiman JE, Bigelow LB, Wyatt RJ (1978) Effects of a selective inhibitor of type A monoamine oxidase (Lilly 51461) on behaviour, sleep and circadian rhythms in depressed and schizophrenic patients. Commun Psycharmacol 2: 513–524

    CAS  Google Scholar 

  • Cawthon RM, Breakefield XO (1979) Differences in A and B forms for monoamine oxidase revealed by limited proteolysis and peptide mapping. Nature 281: 692–694

    PubMed  CAS  Google Scholar 

  • Cawthon RH, Pintar JE, Heseltine JP, Breakefield XO (1981) Differences in the struc- ture of A and B forms of human monoamine oxidase. J Neurochem 37: 363–372

    PubMed  CAS  Google Scholar 

  • Christmas AJ, Coulson CJ, Maxwell DR, Riddell D (1972) A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors. Br J Pharmacol 45: 490–503

    PubMed  CAS  Google Scholar 

  • Clark B, Thompson JW (1972) Analysis of the inhibition of pethidine N-demethylation by monoamine oxidase inhibitors and some other drugs with special reference to drug interactions in man. Br J Pharmacol 44: 89–99

    PubMed  CAS  Google Scholar 

  • Cohen RM, Campbell IC, Dauphin M, Tallman JF, Murphy DL (1982) Changes in a-and fi-receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepressants. Neuropharmacol 21: 293–298

    CAS  Google Scholar 

  • Collins GGS, Youdim MBH (1975) The binding of [14C] phenethylhydrazine to rat liver monoamine oxidase. Biochem Pharmacol 24: 703–706

    PubMed  CAS  Google Scholar 

  • Collins GGS, Youdim MBH, Sandler M (1968) Isoenzymes of human and rat liver monoamine oxidase. FEBS Lett 1: 215–218

    PubMed  CAS  Google Scholar 

  • Collins GGS, Sandler M, Williams ED, Youdim MBH (1970) Multiple forms of human brain mitochondrial monoamine oxidase. Nature 225: 817–820

    PubMed  CAS  Google Scholar 

  • Coq H, Baron C (1968) Etude cinetique de l’activité monoamineoxydasique de mitochondries de foie de rat. Bull Soc Chim Biol 50: 163–178

    PubMed  CAS  Google Scholar 

  • Coquil JF, Goridis C, Mack G, Neff NH (1973) Monoamine oxidase in rat arteries: evidence for different forms and selective localization. Br J Pharmacol 48: 590–599

    PubMed  CAS  Google Scholar 

  • Costa MRC, Breakefield XO (1980) Electrophoretic analysis of 3H-pargyline-labelled monoamine oxidases A and B from human and rat cells. Mol Pharmacol 17: 199–205

    PubMed  CAS  Google Scholar 

  • Craig IW, Powell JF, Brown GK, Summers KM (1982) Studies on human monoamine oxidase. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine Oxidase: Basic and Clinical Frontiers. Excerpta Medica Amsterdam, pp 18–27

    Google Scholar 

  • Davison AN (1958) Physiological role of monoamine oxidase. Physiol Rev 38: 729–747

    PubMed  CAS  Google Scholar 

  • Della Corte L, Tipton KF (1980) The turnover of the A- and B-forms of monoamine oxidase in rat liver. Biochem Pharmacol 29: 891–895

    PubMed  CAS  Google Scholar 

  • De la Lande IS, Hill BD, Jellet LB, McNell JM (1970) The role of monoamine oxidase in the response of the isolated central artery of the rabbit ear to tyramine. Br J Pharmacol 40: 249–256

    PubMed  Google Scholar 

  • De la Torre JC (1972) Dynamics of brain monoamines. Plenum Press New York, pp 87–106

    Google Scholar 

  • Demarest KT, Azzaro AJ (1979) The association of type A monoamine oxidase with the nigrostriatal dopamine neuron. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 423–430

    Google Scholar 

  • Demisch L, Demisch K, Seiler N (1979) Factors altering platelet monoamine oxidase. The influence of oral glucose intake. Metabolism 28: 144–150

    PubMed  CAS  Google Scholar 

  • Denney RM, Fritz RR, Patel NT, Abell CW (1982 a) Human liver MAO A and B separated by immunoaffinity chromatography with MAO-B-specific monoclonal antibody. Science 215:1400–1403

    Google Scholar 

  • Denney RM, Patel NT, Fritz RR, Abell CW (1982 b) A monoclonal antibody elicited to human platelet monoamine oxidase. Isolation and specificity for human monoamine oxidase B but not A. Mol Pharmacol 22:500–508

    Google Scholar 

  • Dennick RG, Mayer RJ (1977) Purification and immunochemical characterisation of monoamine oxidase from rat and human liver. Biochem J 161: 167–174

    PubMed  CAS  Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes 3rd ed. Longman London Domino EF, Krause RR, Bowers M (1973) Various enzymes involved with putatitive neurotransmitters. Arch Gen Psychiat 29:195–201

    Google Scholar 

  • Donnelly CH, Richelson E, Murphy DL (1976) Properties of monoamine oxidase in mouse neuroblastoma NIE-115 cells. Biochem Pharmacol 25: 1639–1643

    PubMed  CAS  Google Scholar 

  • Dunlop E (1963) Antidepressant effects of MAO inhibitors. Ann NY Acad Sci 107: 1107–1117

    Google Scholar 

  • Durden DA, Philips SR, Boulton AA (1976) Identification and distribution of benzylamine in tissue extracts isolated from rats pretreated with pargyline. Biochem Pharmacol 25: 858–859

    PubMed  CAS  Google Scholar 

  • Eberson LE, Persson K (1962) Studies on monoamine oxidase inhibitors: the autoxidation of ß-phenylisopropyl hydrazine as a model reaction for irreversible monoamine oxidase inhibition. J Med Pharm Chem 5: 738–752

    CAS  Google Scholar 

  • Edelstein SB, Castiglione CM, Breakefield XO (1978) Monoamine oxidase activity in normal and Lesch-Nyhan fibroblasts. J Neurochem 31: 1247–1254

    PubMed  CAS  Google Scholar 

  • Edwards DJ (1976) Monoamine oxidases in brain and platelets: implications for the role of trace amines and drug action. In: Usdin E, Sandler M (eds) Trace Amines in the Brain. Dekker New York

    Google Scholar 

  • Edwards DJ, Burns MO (1974) Effects of tricyclic antidepressants on human platelet monoamine oxidase. Life Sci 15: 2045–2058

    CAS  Google Scholar 

  • Edwards DJ, Chang S-S (1975) Multiple forms of monoamine oxidase in rabbit platets. Life Sci 17: 1127–1134

    PubMed  CAS  Google Scholar 

  • Edwards DJ, Malsbury CW (1978) Characteristics of monoamine oxidase in brain and other organs of the golden hamster. Biochem Pharmacol 27: 959–963

    PubMed  CAS  Google Scholar 

  • Edwards DJ, Pak KY (1979) Selective radiochemical labelling of type A and B active sites of rat liver monoamine oxidase. Biochem Biophys Res Commun 86: 350–357

    PubMed  CAS  Google Scholar 

  • Egashira T, Ekstedt B, Kinemuchi H, Wiberg A, Oreland L (1976) Molecular turnover numbers of different forms of mitochondrial monoamine oxidase in rat. Med Biol 54: 272–277

    PubMed  CAS  Google Scholar 

  • Eiduson S, Buckman T (1979) Studies on MAO using spin-labelled probes. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 213–231

    Google Scholar 

  • Eisler T, Calne DB, Ebert MH, Kopin IJ, Zeigler MG, Levine R, Murphy DL (1979) Biochemical measurements during (—)-deprenyl treatment of Parkinsonism. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 497–505

    Google Scholar 

  • Ekstedt B (1976) Substrate specificity of the different forms of monoamine oxidase in rat liver mitochondria. Biochem Pharmacol 25: 1133–1138

    PubMed  CAS  Google Scholar 

  • Ekstedt B, Oreland L (1976) Heterogeneity of pig liver and pig brain mitochondrial monoamine oxidase. Arch Int Pharmacodyn Ther 222: 157–165

    PubMed  CAS  Google Scholar 

  • Ekstedt B, Magyar K, Knoll J (1978) Does the B form selective monoamine oxidase inhibitor deprenyl lose selectivity by long term treatment? Biochem Pharmacol 28: 919–923

    Google Scholar 

  • Elis J, Laurence DR, Mattie H, Prichard BNC (1967) Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. Br Med J 2: 75–78

    PubMed  CAS  Google Scholar 

  • Elliot GR, Holman RB (1977) Tryptolines as potential modulators of serotonergic function. In: Usdin E, Hamberg D, Barchas J (eds) Neuroregulators and Psychiatric Disorders, Oxford University Press New York, pp 220–228

    Google Scholar 

  • Elsworth JD, Glover V, Reynolds GP, Sandler M, Lees AJ,. Phuapradit P, Shaw KM, Stern GM, Kumar P (1978) Deprenyl administration in man. A selective MAO-B inhibitor without the ‘cheese effect’. Psychopharmacology 57: 33–38

    PubMed  CAS  Google Scholar 

  • Erwin VG, Hellerman L (1967) Mitochondrial monoamine oxidase I. Purification and characterization of the bovine kidney enzyme. J Biol Chem 242:4230–4238

    PubMed  CAS  Google Scholar 

  • Erwin VG, Hellerman L (1967) Mitochondrial monoamine oxidase I. Purification and characterization of the bovine kidney enzyme. J Biol Chem 242:4230–4238

    Google Scholar 

  • Erwin VG, Simon RJ (1969) Occurrence of newly synthesized monoamine oxidase in subcellular fractions of rat liver. J Pharm Sci 58: 1033–1035

    PubMed  CAS  Google Scholar 

  • Everett G (1966) The dopa response potentiation test and its use in screening for antidepressant drugs. Excerpta Med Int Cong Series 122: 164–167

    Google Scholar 

  • Everett GM, Wiegand RG, Rinaldi FU (1963) Pharmacologic studies of some nonhydrazine MAO inhibitors. Ann NY Acad Sci 107: 1068–1080

    CAS  Google Scholar 

  • Faraj BA, Dayton PE, Camp PM, Wilson JP, Malveaux EJ, Schlant RC (1977) Studies on the fate of tyramine in dogs: the effect of monoamine oxidase inhibition, gortafemoral shunt and coronary artery ligation on the kinetics of tyramine. J Pharmacol Exp Ther 200: 384–393

    PubMed  CAS  Google Scholar 

  • Feldstein A, Williamson O (1968) Serotonin metabolism in pineal homogenates. Adv Pharmacol 6: 91–96

    PubMed  CAS  Google Scholar 

  • Finberg JPM, Sabbagh A, Youdim MBH (1980) Pharmacology of selective propargyl “suicide” inhibitors of monoamine oxidase. In: Usdin E, Sourkes TL, Youdim MBH (eds) Enzymes and Neurotransmitters in Mental Disease. Wiley Chichester, pp 205–219

    Google Scholar 

  • Finberg JPM, Tenne M, Youdim MBH (1981) Selective irreversible propargyl derivative inhibitors of monoamine oxidase (MAO) without the cheese effect. In: You-dim MBH, Paykel ES (eds) Monoamine Oxidase Inhibitors: State of the Art. Wiley Chichester, pp 31–43

    Google Scholar 

  • Fischer AG, Schulz AR, Oliner L (1968) Thyroidal biosynthesis of iodothyronines. II. General characteristics and purification of mitochondrial monoamine oxidase. Biochim Biophys Acta 159: 460–471

    PubMed  CAS  Google Scholar 

  • Fjälland B (1979) Antagonism of apomorphine-induced hyperthermia in MAOI-pretreated rabbits as a sensitive model of neuroleptic activity. Psychopharmacology 63: 119–123

    PubMed  Google Scholar 

  • Fowler CJ, Callingham BA (1978) The effect of age on the number of monoamine oxidase active centres in the rat heart. Biochem Soc Trans 6: 955

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Callingham BA (1980) The inhibition of rat heart type A monoamine oxidase by clorgyline as a method for the estimation of enzyme active centers. Mol Pharmacol 16: 546–555

    Google Scholar 

  • Fowler CJ, Oreland L (1980) The nature of the substrate-selective interaction between rat liver mitochondrial monoamine oxidase and oxygen. Biochem Pharmacol 29: 2225–2233

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tipton KF (1981) Concentration dependence of the oxidation of tyramine by the two forms of rat liver mitochondrial monoamine oxidase. Biochem Pharmacol 30: 3329–3332

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tipton KF (1982) Deamination of 5-hydroxytryptamine by both forms of monoamine oxidase in the rat brain J Neurochem 38: 733–736

    CAS  Google Scholar 

  • Fowler CJ, Callingham BA, Mantle TJ, Tipton KF (1978) Monoamine oxidase A and B: a useful concept? Biochem Pharmacol 27: 97–101

    CAS  Google Scholar 

  • Fowler CJ, Ekstedt B, Egashira T, Kinemuchi H, Oreland L (1979) The interaction between human platelet monoamine oxidase, its monoamine substrates and oxygen. Biochem Pharmacol 28: 3063–3068

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Callingham BA, Mantle TJ, Tipton KF (1980a) The effect of lipophilic compounds upon the activity of rat liver mitochondrial monoamine oxidase-A and B. Biochem Pharmacol 29: 1177–1183

    CAS  Google Scholar 

  • Fowler CJ, Oreland L, Marcusson J, Winblad B (1980b) Titration of human brain monoamine oxidase-A and -B by clorgyline and L-deprenil. Naunyn-Schmiedeberg’s Arch Pharmacol 311: 263–272

    CAS  Google Scholar 

  • Fuentes JA, Neff NH(1977) Inhibition by pargyline of cardiovascular amine oxidase activity. Biochem Pharmacol 26:2107–2112

    Google Scholar 

  • Fuentes JA, Ordaz A, Neff NH (1979) Central mediation of the antihypertensive effect of pargyline in spontaneously hypertensive rats. Eur J Pharmacol 57: 21–27

    PubMed  CAS  Google Scholar 

  • Fuller RW (1968) Kinetic studies and in vivoeffects of a new monoamine oxidase inhibitor N-(2[o-chlorophenoxy]-ethyl)-cyclopropylamine Biochem Pharmacol 17: 2097–2106

    CAS  Google Scholar 

  • Fuller RW (1972) Selective inhibition of monoamine oxidase. Adv Biochem Psychopharmac 5: 339–354

    CAS  Google Scholar 

  • Fuller RW, Hemrick SK (1979) Stereoselective inhibition of monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function, and Altered Functions. Academic Press New York, pp 245–250

    Google Scholar 

  • Fuller RW, Warren BJ, Molloy BB (1970) Selective inhibition of monoamine oxidase in rat brain mitochondria. Biochem Pharmacol 19: 2934–2936

    PubMed  CAS  Google Scholar 

  • Fuller RW, Slater IH, Mills J (1979) The development of N-cyclopropyl-arylalkyla-mines as monoamine oxidase inhibitors. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 317–333

    Google Scholar 

  • Furness JB, Costa M (1971) Monoamine oxidase histochemistry of enteric neurones in guinea pig. Histochemie 28: 324–336

    PubMed  CAS  Google Scholar 

  • Fuxe K, Calne DB (1979) Dopaminergic Ergot Derivatives and motor functions. Pergamon Press Oxford

    Google Scholar 

  • Fuxe K, Goldstein M, Ljungdahl A (1970) Anti-Parkinsonian drugs and central dopamine neurons. Life Sci 9: 811–824

    CAS  Google Scholar 

  • Gabay S, Achee FM, Mentes G (1976) Some parameters affecting the activity of monoamine oxidase in purified bovine brain mitochondria. J Neurochem 27: 415–424

    PubMed  CAS  Google Scholar 

  • Garcha G, Imrie PR, Marley E, Thomas DV (1979) Effects of monoamine oxidase inhibitor (MAOI) pretreatment on the fate of intraduodenally instilled [14C]-tyramine. Brit J Pharmacol 67: 454 P

    Google Scholar 

  • Gaziri LCJ, Ladowsky W (1973) Monoamine oxidase variation during sexual differentiation. Neuroendocrinology 12: 249–256

    PubMed  CAS  Google Scholar 

  • Gessa GL, Cuenca E, Costa E (1963) On the mechanism of hypotensive effects of MAO inhibitors. Ann NY Acad Sci 107: 935–941

    PubMed  CAS  Google Scholar 

  • Ghosh SK, Guha SR (1978) Further studies on the inhibition of monoamine oxidation by monoamine oxidase inhibitors. Biochem Pharmacol 27: 112–114

    PubMed  CAS  Google Scholar 

  • Giachetti A, Shore PA (1966) Optical specificity of monoamine oxidase. Life Sci 5: 1373–1378

    PubMed  CAS  Google Scholar 

  • Giachetti A, Shore PA (1967) Monoamine oxidase inhibition in the adrenergic neuron by bretylium, debrisoquin, and other adrenergic neuronal blocking agents. Biochem Pharmacol 16: 237–238

    CAS  Google Scholar 

  • Gillis CN, Roth JA (1977) The fate of monoamines in perfused rabbit lung. Brit J Pharmacol 59: 585–590

    CAS  Google Scholar 

  • Glenner GC, Weissbach H, Redfield BG (1960) The histochemical demonstration of enzymatic activity by a nonenzymatic redox reaction. Reduction of tetrazolium salts by indolyl-3-acetaldehyde. J Histochem Cytochem 8: 258–261

    PubMed  CAS  Google Scholar 

  • Glover V, Sandler M, Owen F, Riley GJ (1977) Dopamine is a monoamine oxidase B substrate in man Nature 265: 80–81

    CAS  Google Scholar 

  • Glover V, Elsworth JD, Sandler M (1980) Dopamine oxidation and its inhibition by (—)-deprenyl. J Neural Transm Suppl 16: 163–171

    PubMed  CAS  Google Scholar 

  • Glowinski J, Hamon M, Javoy F, Morot-Gaudry Y (1972) Rapid effects of monoamine oxidase inhibitors on synthesis and release of central monoamines. Adv Biochem Psychopharmacology 5: 423–440

    CAS  Google Scholar 

  • Goldberg LI (1964) Monoamine oxidase inhibitors. J Am Med Assn 190: 456–462

    CAS  Google Scholar 

  • Gomes B, Kloepfer HG, Oi S, Yasunobu KT (1976) The reaction of sulphydryl rea-gents with bovine hepatic monoamine oxidase. Evidence for the presence of two cysteine residues essential for activity. Biochim Biophys Acta 483: 347–357

    Google Scholar 

  • Goridis C, Neff NH (1971) Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type. Br J Pharmacol 43: 814–818

    PubMed  CAS  Google Scholar 

  • Gorkin VZ (1973) Monoamine oxidase: versatility of catalytic properties and possible biological functions. Adv Pharmacol Chemother 11: 1–50

    PubMed  CAS  Google Scholar 

  • Gorkin VZ (1976) Monoamine oxidase inhibitors and the transformation of monoamine oxidase. Ciba Foundation Symposium 39 ( New Ser ), Elsevier Amsterdam pp 61–68

    Google Scholar 

  • Gorkin VZ, Tat’yanenko LV (1967) On the inhibition by harmine of oxidative deamination of biogenic amines. Life Sci 6: 791–795

    PubMed  CAS  Google Scholar 

  • Grahame-Smith DB (1971) Studies in vitroon the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem 18: 1053–1066

    PubMed  CAS  Google Scholar 

  • Grahame-Smith DG (1974) How important is the synthesis of brain 5-hydroxytryptamine in the physiological control of its central function? Adv Biochem Psycho-pharmacology 10: 83–91

    CAS  Google Scholar 

  • Green AR, Grahame-Smith DG (1975) 5-Hydroxytryptamine and other indoles in the central nervous system. In: Plenum New York (Handbook of Psychopharmacology, vol 3 )

    Google Scholar 

  • Green AR, Youdim MBH (1975) Effects of monoamine oxidase inhibition by clorgyline, deprenyl and tranylcypromine on 5-hydroxytryptamine concentration in rat brain and hyperactivity following tryptophan administration. Br J Pharmacol 55: 415–422

    PubMed  CAS  Google Scholar 

  • Green AR, Youdim MBH (1976) Use of behavioural model to study the action of monoamine oxidase inhibition in vivo. Ciba Foundation Symposium 39 Elsevier Amsterdam, pp 231–240

    Google Scholar 

  • Green AR, Mitchell BD, Tordoff FC, Youdim MBH (1977) The evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivoand for degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxyptamine. Br J Pharmacol 60: 343–349

    PubMed  CAS  Google Scholar 

  • Greengrass PM, Tonge SR (1971) Changes in brain monoamine concentrations during the oestrous cycle in the mouse: possible pharmacological implications J Pharm Pharmacol 23: 897–898

    CAS  Google Scholar 

  • Guha SR, Ghosh SK (1970) Inhibition of monoamine oxidation in brain by monoamine oxidase inhibitors. Biochem Pharmacol 19: 2929–2932

    PubMed  CAS  Google Scholar 

  • Hall DWR, Logan BW, Parsons GH (1969) Further studies on the inhibition of monoamine oxidase by M & B 9302 (Clorgyline). I. Substrate specificity in various mammalian species. Biochem Pharmacol 18: 1447–1454

    PubMed  CAS  Google Scholar 

  • Harada M, Nagatsu T (1969) Identification of the flavin in the purified beef brain mitochondrial monoamine oxidase. Experientia 25: 583–584

    PubMed  CAS  Google Scholar 

  • Harada M, Mizutani K, Nagatsu T (1971) Purification and properties of mitochondrial monoamine oxidase in beef brain. J Neurochem 18: 559–569

    PubMed  CAS  Google Scholar 

  • Hartman BK (1972) The discovery and isolation of a new monoamine oxidase from brain. Biol Psychiat 4: 147–155

    PubMed  CAS  Google Scholar 

  • Hartman BK, Udenfriend S (1972) The use of immunological technique for the characterization of bovine monoamine oxidase from liver and brain. Adv Biochem Psychopharmac 5: 119–128

    CAS  Google Scholar 

  • Hartman BK, Yasunobu KT, Udenfriend S (1971) Immunological identity of the multiple forms of beef liver mitochondrial monoamine oxidase. Arch Biochem Biophys 147: 797–804

    PubMed  CAS  Google Scholar 

  • Hartshorn EA (1976) Interactions of CNS antidepressant psychotherapeutic agents. In: (eds) Handbook of Drug Interactions 3rd edition. Drug Intelligence Publications Hamilton Illinois

    Google Scholar 

  • Hawkins M, Breakefield XO (1978) Monoamine oxidase A and B in cultured cells. J Neurochem 30: 1391–1397

    PubMed  CAS  Google Scholar 

  • Hawkins M, Costa MR, Breakefield XO (1979) Distinct forms of monoamine oxidase expressed in hepatoma and Hela cells in culture. Biochem Pharmacol 28: 525–528

    Google Scholar 

  • Heikkila RE, Manzio L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311: 467–469

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Duvoisin RC, Finberg JPM, Youdim MBH (1985) Prevention of MPTPinduced neurotoxicity by AGN 1133 and AGN 1135, selective inhibitors of monoamine oxidase B. Eur J Pharmacol 116: 313–397

    PubMed  CAS  Google Scholar 

  • Hendley ED, Snyder SH (1968) Relationship between the action of monoamine oxidase inhibitors on the noradrenaline uptake system and their antidepressant efficacy. Nature 220: 1330–1331

    PubMed  CAS  Google Scholar 

  • Herd JA (1969) A new antidepressant M & B 9302. A pilot study and a double blind controlled trial. Clin Trials 6: 119–126

    Google Scholar 

  • Himms-Hagen J (1972) Effects of catecholamines on metabolism. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer Berlin Heidelberg New York, pp 363–441 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Hiramatsu A, Tsurushkiin S, Yasunobu KT (1975) Evidence for essential histidine residues in bovine-liver mitochondrial monoamine oxidase. Eur J Biochem 57: 587–593

    PubMed  CAS  Google Scholar 

  • Ho BT (1972) Monoamine oxidase inhibitors. J Pharm Sci 61: 821–837

    PubMed  CAS  Google Scholar 

  • Holman RB, Seagraves E, Elliot GR, Barchas JD (1976) Stereotyped hyperactivity in rats treated with tranylcypromine and specific inhibitor of 5-HT reuptake. Behay. Biol 16: 507–514

    CAS  Google Scholar 

  • Holman RB, Dement WC, Guilleminoult C (1977) Sleep disorders and neuroregulators. In: (eds) Neuroregulators and Psychiatric Disorders Oxford University Press New York

    Google Scholar 

  • Holzbauer M, Youdim MBH (1973) The oestrous cycle and monoamine oxidase activity. Br J Pharmacol 48: 600–608

    PubMed  CAS  Google Scholar 

  • Holzbauer M, Youdim MBH (1977) Physiological control of monoamine oxidase. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and Function of Monoamine Enzymes, Dekker New York, pp 601–627

    Google Scholar 

  • Horita A, Lowe MC (1972) On the extraneuronal nature of cardiac monoamine oxidase in the rat. Adv Biochem Psychopharmacology 5: 227–242

    CAS  Google Scholar 

  • Horwitz D, Goldberg LI, Sjoerdsma A (1960) Increased blood pressure responses to dopamine and norepinephrine produced by monoamine oxidase inhibitors in man. J Lab Clin Med 56: 747–753

    PubMed  CAS  Google Scholar 

  • Houslay MD (1977) A model for the selective mode of action of the irreversible monoamine oxidase inhibitors clorgyline and deprenyl, based on studies of their ability to activate a Ca2+_Mg2+ ATPase in defined lipid environments. J Pharm Pharmacol 29: 664–669

    PubMed  CAS  Google Scholar 

  • Houslay MD (1978) Lysolecithin is a selective reversible inhibitor of mitochondrial monoamine oxidase. Biochem Pharmacol 27: 1287–1288

    PubMed  CAS  Google Scholar 

  • Houslay MD (1980) Lipid substitution of mitochondrial monoamine oxidase can lead to the abolition of clorgyline selective inhibition without alteration in the A/B ratio assessed by substrate utilisation. Biochem Pharmacol 29: 3211–3213

    PubMed  CAS  Google Scholar 

  • Houslay MD, Marchmont RJ (1980) Exposure of mitochondrial outer membranes to neuroaminidase selectively destroys monoamine oxidase A activity. J Pharm Pharmacol 32: 65–66

    PubMed  CAS  Google Scholar 

  • Houslay MD, Tipton KF (1973 a) The reaction pathway of membrane bound rat liver mitochondrial monoamine oxidase. Biochem J 135:735–750

    Google Scholar 

  • Houslay MD, Tipton KF (1973 b) The nature of the electrophoretically separable mul-tiple forms of rat liver monoamine oxidase. Biochem J 135:173–186

    Google Scholar 

  • Houslay MD, Tipton KF (1974) A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. Biochem J 139: 645–652

    PubMed  CAS  Google Scholar 

  • Houslay MD, Tipton KF (1975 a) Inhibition of beef plasma amine oxidase by clorgyline. Biochem Pharmacol 24:429–431

    Google Scholar 

  • Houslay MD, Tipton KF (1975 b) Rat liver mitochondrial monoamine oxidase. A change in the reaction mechanism on solubilization. Biochem J 145:311–321

    Google Scholar 

  • Houslay MD, Tipton KF (1975 c) Amine competition for oxidation by rat liver mitochondrial monoamine oxidase. Biochem Pharmacol 24:627–631

    Google Scholar 

  • Houslay MD, Garrett NJ, Tipton KF (1974) Mixed substrate experiments with human brain monoamine oxidase. Biochem Pharmacol 23: 1937–1944

    PubMed  CAS  Google Scholar 

  • Houslay MD, Tipton KF, Youdim MBH (1976) Multiple form of monoamine oxidase: fact and artefact. Life Sci 19: 467–473

    PubMed  CAS  Google Scholar 

  • Howell SL, Montague W (1973) Adenylcyclase activity in isolated rat islets of Langerhans. Biochem Biophys Acta 320: 44–52

    PubMed  CAS  Google Scholar 

  • Huang CL, Schulz AR (1972) The effect of inhibitors of thyroid MAO on the incorporation of iodide into thyroid slice protein. Life Sci 11: 975–982

    CAS  Google Scholar 

  • Huang RH (1980) Lipid-protein interactions in the multiple forms of monoamine oxidase. Enzymatic and esr studies with purified intact rat brain mitochondria. Mol Pharmacol 17: 192–198

    PubMed  CAS  Google Scholar 

  • Huang RH (1981) Topology and lipid protein association of MAO-A and MAO-B. In: Usdin E, Weiner N, Youdim MBH (eds) Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects. MacMillan London, pp 489–501

    Google Scholar 

  • Huang RH, Eiduson S (1977) Signification of multiple forms of brain monoamine oxi- dase in situas probed by electron spin resonance. J Biol Chem 252: 284–290

    PubMed  CAS  Google Scholar 

  • Huang RH, Faulkner R (1980) Lipid-protein interactions in the multiple forms of monoamine oxidases: lipases as probes using purified intact rat brain mitochondria. Mol Pharmacol 18: 267–273

    PubMed  CAS  Google Scholar 

  • Hunter KR, Boakes AJ, Laurence DR, Stern GM (1970) Monoamine oxidase inhibitors and L-dopa. Br Med J 3: 388–398

    PubMed  CAS  Google Scholar 

  • Husain M, Edmondson DE, Singer TP (1982) Kinetic studies on the catalytic mechanism of liver monoamine oxidase. Biochemistry 21: 595–600

    PubMed  CAS  Google Scholar 

  • Huszti Z (1972) Kinetic studies on rat brain monoamine oxidase. Mol Pharmacol 8: 385–397

    PubMed  CAS  Google Scholar 

  • Ichinose M, Gomes B, Sanemori H, Yasunobu KT (1982) Bovine liver mitochondrial monoamine oxidase is not an iron-dependent enzyme. J Biol Chem 257: 887–888

    PubMed  CAS  Google Scholar 

  • Ishmahan G, Parvez H, Parvez S, Youdim MBH (1978) The effect of selective monoamine oxidase inhibitors clorgyline and deprenyl upon tissue glycogen stores and blood glucóse levels. In: Bellinger K, Klatzo I, Riederer P (eds) Neurotransmitters in Cerebral Coma and Stroke. Springer Wien

    Google Scholar 

  • Iversen LL (1973) Catecholamine uptake processes. Br Med Bull 29: 130–135

    PubMed  CAS  Google Scholar 

  • Jain M (1977) Monoamine oxidase: examination of multiple forms. Life Sci 20: 1925–1934

    PubMed  CAS  Google Scholar 

  • Jain M, Sands FL (1974) Electrophoretic homogeneity of solubilized human brain monoamine oxidase. J Neurochem 23: 1291–1293

    PubMed  CAS  Google Scholar 

  • Jarrott B (1971) Occurrence and properties of monoamine oxidase in adrenergic neurones. J Neurochem 18: 7–16

    PubMed  CAS  Google Scholar 

  • Jarrott B, Iversen LL (1968) Subcellular distribution of monoamine oxidase activity in rat liver and vas deferens. Biochem Pharmacol 17: 1619–1625

    PubMed  CAS  Google Scholar 

  • Jarrott B, Iversen LL (1971) Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens. J Neurochem 18: 1–6

    PubMed  CAS  Google Scholar 

  • Jarrott B, Langer SZ (1971) Changes in monoamine oxidase and catechol-O-methyl transferase activities after denervation of the nictitating membrane of the cat. J Physiol (Lond) 212: 549–559

    CAS  Google Scholar 

  • Johnson CL (1976) Quantititive structure-acitivity studies on monoamine oxidase inhibitors. J Med Chem 19: 600–605

    PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    PubMed  CAS  Google Scholar 

  • Jouvet M (1969) Biogenic amines and the state of sleep. Science 163: 32–41

    PubMed  CAS  Google Scholar 

  • Jouvet N (1974) The role of monoaminergic neurons in the regulation and function of sleep. In: (eds) Basic Sleep Mechanism. Academic Press New York

    Google Scholar 

  • Kalir A, Sabbagh A, Youdim MBH (1981) Selective acetylenic “suicide” and reversible inhibitors of monoamine oxidase type A and B. Br J Pharmacol 73: 55–64

    PubMed  CAS  Google Scholar 

  • Kandaswami C, d’Iorio A (1978) On rat liver mitochondrial monoamine oxidase activ-ity with lipids. Arch Biochem Biophys 190: 847–849

    PubMed  CAS  Google Scholar 

  • Kandaswami C, d’Iorio A (1979) On hepatic mitochondrial monoamine oxidase activity in lipid deficiency. Can J Biochem 57: 588–594

    PubMed  CAS  Google Scholar 

  • Kandaswami C, Diaz Borges JM, d’Iorio A (1977) Studies on the fractionation of monoamine oxidase from rat liver mitochondria. Arch Biochem Biophys 183: 273–280

    PubMed  CAS  Google Scholar 

  • Keane PE, Chanoine F, Strolin-Benedetti M (1979) The effects of specific type A and B MAO inhibitors on reserpine-induced changes in brain dopamine and serum prolactin levels in the rat. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 341–346

    Google Scholar 

  • Kearney EB, Salach JI, Walker WH, Seng RL, Kenney WC, Zeszotek E, Singer TP (1971) The covalently bound flavin of hepatic monoamine oxidase. I. Isolation and sequence of a flavin peptide and evidence for binding at the 8 aposition. Eur J Biochem 24: 321–327

    PubMed  CAS  Google Scholar 

  • Kenney WC, Nagy J, Salach JI, Singer TP (1979) Structure of the covalent phenylhydrazine adduct of monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 25–37

    Google Scholar 

  • Kim HC, d’lorio A (1968) Possible isoenzymes of monoamine oxidase in rat tissues. Can J Biochem 46: 295–297

    PubMed  CAS  Google Scholar 

  • Kinemuchi H, Wakui Y, Toyoshima Y, Hayashi N, Kamijo K (1979) ß-Phenylethylamine (PEA), a concentration-dependent preferential substrate for multiple forms of MAO. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 205–212

    Google Scholar 

  • Kinemuchi H, Wakui W, Kamijo K (1980) Substrate selectivity of type A and type B monoamine oxidase in rat brain. J Neurochem 35: 109–115

    PubMed  CAS  Google Scholar 

  • Kinemuchi H, Arai Y, Oreland L, Tipton KF, Fowler CJ (1982) Time-dependent inhibition of monoamine oxidase by ß-phenethylamine. Biochem Pharmacol 31: 959–964

    PubMed  CAS  Google Scholar 

  • Kinemuchi H, Fowler C-T, Tipton KF (1987) The Neurotoxicity of 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) and its relevance to Parkinson’s Disease. Neurochem Inter 11: 359–382

    CAS  Google Scholar 

  • Kline NS (1963) Use of pargyline (Eutonyl) in private practice Ann NY Acad Sci 107: 1090–1106

    CAS  Google Scholar 

  • Klingman GI (1966) Monoamine oxidase activity of peripheral organs and sympath- etic ganglia of rat after sympathectomy. Biochem Pharmacol 15: 1729–1736

    CAS  Google Scholar 

  • Knoll J (1976) Analysis of the pharmacological effects of selective monoamine oxidase inhibitors. Ciba Foundation Symposium 39 ( New Ser. ), Elsevier Amsterdam pp 135–155

    Google Scholar 

  • Knoll J (1978) The possible mechanisms of action of (—)-deprenyl in Parkinson’s disease. J Neural Transmis 43: 177–198

    CAS  Google Scholar 

  • Knoll J (1979) Structure-activity relationships of the selective inhibitors of MAO-B. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure Function and Altered Functions, Academic Press New York, pp 431–446

    Google Scholar 

  • Knoll J (1980) Monoamine oxidase chemistry and pharmacology. In: Sandler M (ed) Enzyme Inhibitors on Drugs, MacMillan London, pp 151–171

    Google Scholar 

  • Knoll J (1981) The pharmacology of selective MAO inhibitors. In: Youdim MPH, Paykel ES (eds) Monoamine Oxidase Inhibition; The State of the Art. Chichester: Wiley. pp 43–64.

    Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408

    PubMed  CAS  Google Scholar 

  • Knoll J, Vizi ES, Somogyi E (1968) Phenylisopropylmethylpropinylamine (E-250), a monoamine oxidase inhibitor antagonising the effects of tyramine. ArzneimForsch 18: 109–112

    CAS  Google Scholar 

  • Knoll J, Vizi ES, Magyar K (1972) Pharmacological studies on some central effects of amphetamines. In: Lissale K (ed) Recent Developments of Neurobiology in Hungary III. Results in Neuroanatomy, Neurophysiology, Neuropathophysiology and Neuropharmacology. Publishing House of the Hungarian Academy of Sciences, Budapest, pp 167–217

    Google Scholar 

  • Knoll J, Ecsery Z, Magyar K, Satory E (1978) Novel (—)-deprenyl-derived selective inhibitors of B-type monoamine oxidase. The relation of structure to their action. Biochem Pharmacol 27: 1739–1747

    PubMed  CAS  Google Scholar 

  • Kochersperger L, Waguespack A, Patterson J, Hsieh C, Weyler W, Salach J, Denney R (1986) Immunological uniqueness of human monoamine oxidases A and B. New evidence from studies with monoclonal antibody to human, MAO A. J Neurosci In aPress.

    Google Scholar 

  • Kopin IJ, Axelrod J (1963) The role of monoamine oxidase in the release and metabolism of norepinephrine. Ann NY Acad Sci 107: 848–855

    PubMed  CAS  Google Scholar 

  • Kopin IJ, Fischer JE, Musacchio J, Horst WD (1964) Evidence for a false neurochemical transmitter as a mechanism for the hypotensive effect of monoamine oxidase inhibitors. Biochemistry 52: 716–721

    CAS  Google Scholar 

  • Kroon MC, Veldstra H (1972) Forms of rat brain mitochondrial monoamine oxidase. Subcellular fractionation. FEBS Lett 24: 173–176

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Wolf WA, Youdim MBH (1985) 5-Hydroxytryptamine release in vivo from a cytoplasmic pool; studies on the 5-HT behavioural syndrome in reserpinized rats. Br J Pharmacol 84:121–129

    Google Scholar 

  • Kunimoto N, Hazama H, Kamase H (1979) Regional distribution of type B MAO activity towards ß-phenylethylamine in the individual rat hypothalamic nuclei. Brain Res 176: 175–179

    PubMed  CAS  Google Scholar 

  • Kwatra MM, Sourkes TL (1981) Substrate-dependent activation energy of the reaction catalysed by monoamine oxidase. Arch Biochem Biophys 210: 531–536

    PubMed  CAS  Google Scholar 

  • Lader MH, Sakalis G, Tansella M (1970) Interactions between sympathomimetic amines and a new monoamine oxidase inhibitor. Psychopharmacologia 18: 118–123

    PubMed  CAS  Google Scholar 

  • Lagnado JR, Okamoto M, Youdim MBH (1971) The effect of tetrazolium salts on monoamine oxidase activity. FEBS Lett 17: 117–120

    Google Scholar 

  • Laroche MJ, Brodie BB (1960) Lack of relationship between inhibition of monoamine oxidase and potentiation of hexobarbital hypnosis. J Pharmacol Exp Ther 130: 134–137

    PubMed  CAS  Google Scholar 

  • Lees AJ, Shaw KM, Kohout LJ, Stern GM, Elsworth JD, Sandler M, Youdim MBH (1977) Deprenil in Parkinson’s disease Lancet 11: 791–795

    Google Scholar 

  • Leffler JE, Grunwald E (1963) Rates and equilibria of organic reactions Wiley New York

    Google Scholar 

  • Levitt P, Pintar J, Breakefield X (1982) Immunocyto-chemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79: 6385–6389

    PubMed  CAS  Google Scholar 

  • Lewinsohn R, Glover V, Sandler M (1980a) ß-Phenylethylamine and benzylamine as substrates for human monoamine oxidase A: a source of some anomalies? Biochem Pharmacol 29: 777–781

    CAS  Google Scholar 

  • Lewinsohn R, Glover V, Sandler M (1980b) Development of benzylamine oxidase and monoamine oxidase A and B in man Biochem Pharmacol 29: 1221–1230

    CAS  Google Scholar 

  • Lyles GA, Callingham BA (1975) Evidence for a clorgyline resistant monoamine me-tabolizing activity in the rat heart. J Pharm Pharmacol 27: 682–691

    CAS  Google Scholar 

  • Lyles GA, Greenawalt JW (1978) Possible heterogeneity of type B monoamine oxidase in pig heart mitochondria. Biochem Pharmacol 27: 923–935

    PubMed  CAS  Google Scholar 

  • Lyles GA, Shaffer CJ (1979) Substrate specificity and inhibitor sensitivity of mono- amine oxidase in rat kidney mitochondria. Biochem Pharmacol 28: 1099–1106

    PubMed  CAS  Google Scholar 

  • Mackay AVP, Davies P, Dewar Al, Yates CM (1978) Regional distribution of enzymes associated with neurotransmission by monoamines, acteylcholine and GABA in the human brain. J Neurochem 30: 827–839

    PubMed  CAS  Google Scholar 

  • Maitre L, Delini-Stula A, Waldmeier PC (1976) Relations between the degree of monoamine oxidase inhibition and some psychopharmacological responses to monoamine oxidase inhibitors in rats. Ciba Foundation Symposion 39 (New Ser) Elsevier Amsterdam, pp 247–267

    Google Scholar 

  • Mann J, Gershon S (1980) L-Deprenyl, a selective monoamine oxidase type B inhibitor in endogenous depression. Life Sci 26: 877–882

    PubMed  CAS  Google Scholar 

  • Mantle TI (1978) Molecular weight determination, density gradient centrifugation, electrophoresis and irradiation inactivation. In: Kornberg HL, Metcalfe JC, Northcote DH, Pogson CI, Tipton KF (eds) Techniques in the Life Sciences: Biochemistry vol B1/1, Elsevier Amsterdam, pp B1056

    Google Scholar 

  • Mantle TJ, Tipton KF (1982) Monoamine oxidase A and B: time for re-evaluation? In: (eds) Trends in Autonomic Pharmacology, vol 2. Urban & Schwarzenberg, Baltimore München

    Google Scholar 

  • Mantle TJ, Wilson K, Long RF (1975 a) Studies on the selective inhibition of mem-brane-bound rat liver monoamine oxidase. Biochem Pharmacol 24:2031–2038

    Google Scholar 

  • Mantle TJ, Wilson K, Long RF (1975 b) Kinetic studies of membrane bound rat liver monoamine oxidase. Biochem Pharmacol 24:2039–2046

    Google Scholar 

  • Mantle TJ, Tipton KF, Garrett NJ (1976) Inhibition of monoamine oxidase by amphetamine and related compounds. Biochem Pharmacol 25: 2073–2077

    PubMed  CAS  Google Scholar 

  • Markey SP, Castagnoli N, Trevor AJ, Kopin IJ (1986) Editors. MPTP: a Neurotoxin Producing a Parkinsonian Syndrome. London: Academic Press

    Google Scholar 

  • Marley E (1977) Monoamine oxidase inhibitors and drug interactions. In: Grahame-Smith DG (ed) Drug Interactions. MacMillan London

    Google Scholar 

  • Marley E, Blackwell B (1970) Interactions of monoamine oxidase inhibitors, amines and foodstuffs. Adv Pharmacol Chemother 8: 186–239

    Google Scholar 

  • Maronde RF, Haywood LJ (1963) Evaluation of the monoamine oxidase inhibitor, pargyline, as an antihypertensive agent: A. Clinical results. Ann NY Acad Sci 107: 975–979

    CAS  Google Scholar 

  • Marsden CA, Brock OJ, Guldberg HC (1971) Catechol-O-methyl transferase and monoamine oxidase activities in rat submaxillary gland: effects of ligation, sympathectomy and some drugs. Eur J Pharmacol 15: 335–342

    PubMed  CAS  Google Scholar 

  • Mass JW (1979) Catecholamines and the affective disorders. In: Aromatic Amino Acid Hydroylase and Mental Disease. Wiley London

    Google Scholar 

  • Maycock AL, Abeles RH, Salach JI, Singer TP (1976) The action of acetylenic inhibitors on mitochondrial monoamine oxidase: structure of the Flavin site in the inhibited enzyme. Ciba Foundation Symposium 39 (New Ser) Elsevier Amsterdam, pp 37–47

    Google Scholar 

  • McCauley R, Racker E (1973) Separation of two monoamine oxidases from bovine brain. Mol Cell Biochem 1: 73–81

    PubMed  CAS  Google Scholar 

  • McEwen CM, Sasaki G, Lenz WR (1968) Human liver mitochondrial monoamine oxidase. I. Kinetic studies of model interactions. J Biol Chem 243: 5217–5225

    PubMed  CAS  Google Scholar 

  • McEwen CM, Sasaki G, Jones DC (1969) Human liver mitochondrial monoamine oxidase. II. Determinants of substrate and inhibitor specificities. Biochemistry 8: 3952–3962

    PubMed  CAS  Google Scholar 

  • Mendis M, Pare CMB, Sandler M, Glover V, Stern G (1981) (ö)-Deprenyl in the treatment of depression. In: (eds) Monoamine Oxidase Inhibitors: The State of the Art. Wiley Chichester, pp 171–176

    Google Scholar 

  • Mendlewicz J, Youdim MBH (1977) Monoamine oxidase inhibitors and prolactin secretion. Lancet i: 507

    Google Scholar 

  • Mendlewicz J, Youdim MBH (1978) Anti-depressant potentiation of 5-hydroxytrypto- phan by L-deprenyl, an MAO ‘type B’ inhibitor. J Neural Tansmis 43:279–286 Mendlewicz J, Youdim MBH (1979) Antidepressant potentiation of 5-hydroxytrypto-phan by 1-deprenyl in affective illness. J Aff Disord 2: 137–146

    Google Scholar 

  • Mendlewicz J, Youdim MBH (1981) A selective MAO-B inhibitor (1-deprenil) and 5-HTP as anti-depressant therapy. In: (eds) Monoamine Oxidase Inhibitors: The State of the Art. Wiley Chichester, pp 177–188

    Google Scholar 

  • Mendlewicz J, Youdim MBH (1983) 1-Deprenyl, a selective monoamine oxidase type B inhibitor in the treatment of depression. A double blind evaluation. Br J Psychiat 142:507–511

    Google Scholar 

  • Minamiura N, Yasunobu KT (1978) Bovine liver monoamine oxidase. A modified purification procedure and preliminary evidence for two subunits and one FAD. Arch Biochem Biophys 189: 481–482

    PubMed  CAS  Google Scholar 

  • Mitra C, Guha SR (1980) Serotonin oxidation by type B MAO of rat brain. Biochem Pharmacol 29: 1213–1217

    PubMed  CAS  Google Scholar 

  • Montague W, Howell SL (1975) Cyclic AMP and the physiology of the islets of Langerhans. In: (eds) Advances in Cyclic Nucleotide Research, vol 6. Raven Press New York

    Google Scholar 

  • Modigh K (1973) Effects of chloroimipramine and protriptyline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice. J Neural Transmis 34: 101–109

    CAS  Google Scholar 

  • Mondovi B (1985) Editor. Structure and Functions of Amine Oxidases. Boca Raton: CRC Press

    Google Scholar 

  • Moore KE (1977) The action of amphetamine on neurotransmitters. Biol Psybhiat 12: 451–462

    CAS  Google Scholar 

  • Mueller RA, de Champlain J, Axelrod J (1968) Increased monoamine oxidase activity in isoproterenol-stimulated submaxillary glands. Biochem Pharmacol 17: 2455–2461

    PubMed  CAS  Google Scholar 

  • Muller J, Delage C (1977) Ultracytochemical demonstration of monoamine oxidase activity in nervous and non-nervous tissue of the rat. J Histochem Cytochem 25: 337–348

    PubMed  CAS  Google Scholar 

  • Murphy DL (1976) Clinical, genetic, hormonal and drug influences on the activity of human platelet monoamine oxidase. Ciba Foundation Symposium 39 (New Ser) Amsterdam Elsevier, pp 341–351

    Google Scholar 

  • Murphy DL, Donnelly CH (1974) Monoamine oxidase in man. Enzyme characteristics in platelets, plasma and other human tissues. Adv Biochem Psychopharmacol 12: 71–86

    PubMed  CAS  Google Scholar 

  • Murphy DL, Wyatt RJ (1972) Reduced MAO activity in blood platelets from schizophrenic patients. Nature 238: 225–226

    PubMed  CAS  Google Scholar 

  • Murphy DL, Donelly CH, Richelson E (1976) Substrate and inhibitor related charac- teristics of monoamine oxidase in C6 rat glial cells. J Neurochem 26: 1231–1235

    PubMed  CAS  Google Scholar 

  • Murphy DL, Donnelly CH, Richelson E, Fuller RW (1978) N-substitued cyclopropyla- mines as inhibitors of MAO-A and -B forms. Biochem Pharmacol 27: 176–1769

    Google Scholar 

  • Murphy DL, Lipper S, Campbell IC, Major LF, Slater S, Buchsbaum MS (1979) Comparative studies of MAO-A and MAO-B inhibitors in man. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 457–475

    Google Scholar 

  • Murphy DL, Roy B, Pickar D, Lipper S, Cohen RM, Jimerson P, Lake CR, Muscetlola G, Saavedra J, Kopin I (1981) Cardiovascular changes accompanying MAO inhibition in man In: Usdin E, Weiner N, Youdim MBH (eds) Function and Regulation of Monoamine Enzymes, MacMillan London, pp 549–560

    Google Scholar 

  • Nagatsu T, Nakano G, Mizutani K, Harada M (1972) Purification and properties of amine oxidases in brain and connective tissue (dental pulp). Adv Biochem Psychopharmacol 5: 25–36

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Nakano T, Kato T, Kano-Tanaka K, Higashida H (1982) Expression of monoamine oxidase A and B types in hybrid cells of neuroblastoma. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine Oxidase: Basic and Clinical Frontiers, Excerpta Medica Amsterdam, pp 297–288

    Google Scholar 

  • Nagy J, Salach JI (1981) Identity of the active site flavin peptide fragments from the human “A”-form of monoamine oxidase and the bovine “B”-form of monoamine uxidase. Arch Biochem Biophys 208: 388–394

    PubMed  CAS  Google Scholar 

  • Naoi M, Yagi K (1980) Effect of phospholipids on beef heart mitochondrial monoamine oxidase. Arch Biochem Biophys 205: 18–26

    PubMed  CAS  Google Scholar 

  • Nara S, Gomes B, Yasunobu KT (1966a) Amine oxidase. VII. Beef liver mitochondrial

    Google Scholar 

  • monoamine oxidase, a copper containing protein. J Biol Chem 241:2774–2780

    Google Scholar 

  • Neff NH, Goridis C (1972) Neuronal monamine oxidase: specific enzyme types and their rate of formation. Adv Biochem Psychopharmac 5: 307–323

    CAS  Google Scholar 

  • Neff NH, Tozer TN (1968) In vivo measurement of brain serotonin turnover. Adv Pharmacol 6A:97–109

    Google Scholar 

  • Neff NH, Yang HYT (1974) Another look at the monoamone oxidases and the MAO inhibitor drugs. Life Sci 14: 2061–2074

    PubMed  CAS  Google Scholar 

  • Neff NH, Yang HYT, Goridis C (1973) Degradation of the transmitter amines by specific types of monoamine oxidases. In: Usdin E, Snyder SH (eds) Frontiers in Catecholamine Research. Pergamon Press New York

    Google Scholar 

  • Neff NH, Yang HYT, Fuentes JA (1974) The use of selective monoamine oxidase inhibitor drugs to modify amine metabolism in brain. Adv Biochem Psychopharmacol 12: 49–57

    PubMed  CAS  Google Scholar 

  • Nelson DL, Herbet A, Pötillot Y, Pichat L, Glowinski J, Hamon M (1979) [3H]Harmaline as a specific ligand of MAO-A. I. Properties of the active site of MAO A from rat and bovine brains. J Neurochem 32:1817–1827

    Google Scholar 

  • Neupert W, Brdiczka D, Bucher T (1967) Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria. Biochem Biophys Res Commun 27: 488–493

    PubMed  CAS  Google Scholar 

  • Nies A, Robinson DS, Ravaris CL, Ives JO (1975) The efficacy of the monoamine oxidase inhibitor phenelzine: dose effects and prediction of response. In: (eds) Neuropsychopharmacology. Excerpta Medica Amsterdam

    Google Scholar 

  • Oates JA, Nirenberg PZ, Jepson JB, Sjoerdsma A, Udenfriend S (1963) Conversion of phenylalanine to phenyl ethylamine in patients with phenylketonuria. Proc Soc Exp Biol Med 112: 1078–1081

    PubMed  CAS  Google Scholar 

  • O’Carroll A-M, Fowler CJ, Phillips JP, Tobia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedeberg’s Arch Pharmacol 322: 198–202

    Google Scholar 

  • Ogawa K, Gudbjarnason S, Bing RJ (1967) Nitroglycerin (glyceryl trinitrate) as a monoamine oxidase inhibitor. J Pharmacol Exp Ther 155: 449–455

    PubMed  CAS  Google Scholar 

  • Ogren SO, Ask AJ, Holm AC, Florvall L, Lindbom LO, Lundstrom J, Ross JB (1981) Biochemical and pharmacological properties of a new selective and reversible monoamine oxidase inhibitor, FLA 336 (+). In: Youdim MBH, Paykel ES (eds) Monoamine Oxidase inhibitor — The State of the Art. Wiley Chichester

    Google Scholar 

  • Oi S, Yasunobu KT (1973) Mechanistic aspects of the oxidation of amines by monoamine oxidase. Biochem Biophys Res Commun 53: 631–637

    PubMed  CAS  Google Scholar 

  • Oi S, Shimada K, Inamasu M, Yasunobu KT (1970) Mechanistic studies of beef liver mitochondrial amine oxidase. XVII. Amine oxidase. Arch Biochem Biophys 139: 28–37

    PubMed  CAS  Google Scholar 

  • Oi S, Yasunobu KT, Westley J (1971) The effect of pH on the kinetic parameters and mechanism of beef liver monoamine oxidase. Arch Biochem Biophys 145: 557–564

    PubMed  CAS  Google Scholar 

  • Onesti G, Novack P, Ramirez O, Brest AN, Moyer JH (1964) Hemodynamic effects of pargyline in hypertensive patients. Circulation 30: 830–835

    PubMed  CAS  Google Scholar 

  • Oreland L (1971) Purification and properties of pig liver mitochondrial monoamine oxidase. Arch Biochem Biophys 146: 410–421

    PubMed  CAS  Google Scholar 

  • Oreland L (1972) Some properties of pig liver mitochondrial monoamine oxidase. Adv Biochem Psychopharmac 5: 37–43

    CAS  Google Scholar 

  • Oreland L (1979) The activity of human brain and thrombocyte monoamine oxidase (MAO) in relation to various psychiatric disorders. I. MAO activity in some disease states. In: Singer TP, von Korff RW, Murphy DL (eds) Academic Press New York, pp 379–387

    Google Scholar 

  • Oreland L, Ekstedt B (1972) Soluble and membrane-bound pig liver mitochondrial oxidase: thermostability, tryptic digestibility and kinetic properties. Biochem Pharmacol 21: 2479–2488

    PubMed  CAS  Google Scholar 

  • Oreland L, Kinemuchi H, Stigbrand T (1973a) Pig liver monoamine oxidase: studies on the subunit structure. Arch Biochem Biophys 159: 854–860

    CAS  Google Scholar 

  • Oreland L, Kinemuchi H, Yoo BY (1973b) The mechanism of action of the monoamine oxidase inhibitor pargyline. Life Sci 13: 1533–1541

    CAS  Google Scholar 

  • Oreland L, Fowler CJ, Carlsson A, Magnusson T (1980) Monoamine oxidase-A and -B activity in the rat brain after hemitransection. Life Sci 26: 139–146

    PubMed  CAS  Google Scholar 

  • Owen F, Boume RC, Lai JCK, Williams R (1977) The heterogeneity of monoamine oxidase in distinct populations of rat brain mitochondria. Biochem Pharmacol 26: 289–292

    PubMed  CAS  Google Scholar 

  • Paech C, Salach JI, Singer TP (1979) Suicide inactivation of monoamine oxidase by trans-phenylcyclopropylamine In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 39–50

    Google Scholar 

  • Pare CMB (1976) Introduction to clinical aspects of monoamine oxidase inhibitors in the treatment of depression. Ciba Foundation Symposium 39 (New Ser.) Elsevier Amsterdam, pp 271–280

    Google Scholar 

  • Parkes JD, Tarsy D, Marsden CD, Bovil KT, Phipps JA, Rose P, Asselman P (1975) Amphetamines in the treatment of Parkinsons’s disease. J Neurol Neurosurg Psychiat 38: 323–237

    Google Scholar 

  • Patek DR, Hellerman L (1974) Mitochondrial monoamine oxidase. Mechanism of inhibition by phenylhydrazine and by aralkylhydrazines. Role of enzymatic oxidation. J Biol Chem 249: 2372–2380

    Google Scholar 

  • Peers EM, Lyles GA, Callingham BA (1980) The deamination of isoamylamine by monoamine oxidase in mitochondrial preparations from rat liver and heart: a comparison with phenylethylamine. Biochem Pharmacol 29: 1097–1102

    PubMed  CAS  Google Scholar 

  • Pettinger WA, Oates JA (1968) Supersensitivity to tyramine during monoamine oxidase inhibition in man. Clin Pharmacol Ther 9: 341–344

    PubMed  CAS  Google Scholar 

  • Pettinger WA, Korn A, Spiegel H, Solomon HM, Pocelinko R, Abrams WB (1969) Debrisoquin, a selective inhibitor of intraneuronal monoamine oxidase in man. Clin Pharmacol Ther 10: 667–674

    PubMed  CAS  Google Scholar 

  • Philips SR (1976) ö-Phenylethylaminea metabolically and pharmacologically active amine In: (eds) Non-Catecholic Phenylethylamines. Dekker New York

    Google Scholar 

  • Pintar JE, Cawthon RM, Costa MCC, Breakefield XO (1979) A search for structural differences in MAO: electrophoretic analysis of 3H-pargyline labelled proteins. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function, and Altered Functions, Academic Press New York, pp 185–196

    Google Scholar 

  • Pintar JE, Barbosa J, Francke U, Castiglione CM, Hawkins M, Breakefield XO (1981a) Gene for monoamine oxidase type A assigned to the human X chromosome. J Neurosci 1: 166–175

    CAS  Google Scholar 

  • Pintar JE, Cawthon RM, Hawkins M, Castiglione CM, Breakefield XO (1981b) Biochemical and genetic analysis of MAO-A and B. In: Usdin E, Weiner N, Youdim MBH (eds) Function and Regulation of Monoamine Enzymes. MacMillan London, pp 855–863

    Google Scholar 

  • Planz G, Quiring K, Palm D (1972) Rates of recovery of irreversibly inhibited monoamine oxidase: a measure of enzyme protein turnover. Naunyn-Schmiedeberg’s Arch Pharmacol 273: 27–42

    CAS  Google Scholar 

  • Pletscher A, Gey KF, Zeller P (1960) Monoaminoxidase Hemmer. Arzneim-Forschung 2: 417–590

    CAS  Google Scholar 

  • Poirier LJ, Sourkes TL, Bedard P (1979) The extrapyramidal system and its disorders. Raven Press New York

    Google Scholar 

  • Powell JF, Craig IW (1977) Biochemical and immunological studies of the mono-amine oxidase activities of cultured human cells. Biochem Soc Trans 5: 180–182

    PubMed  CAS  Google Scholar 

  • Pratesi P, Blaschko H (1959) Specificity of amine oxidase for optically active sub-strates and inhibitors. Brit J Pharmacol 14: 256–260

    PubMed  CAS  Google Scholar 

  • Puig M, Wakade AR, Kirpekar SM (1972) Effect on the sympathetic nervous system of chronic treatment with pargyline and L-dopa. J Pharmacol Exp Ther 182: 130–134

    PubMed  CAS  Google Scholar 

  • Quadri SK, Kledzik GS, Meites J (1973) Reinitiation of estrus cycle in old constant estrus rats by centrally acting drugs. Neuroendocrinology 11: 248–255

    PubMed  CAS  Google Scholar 

  • Rand MJ, Trinker FR (1968) The mechanism of the augmentation of responses to indirectly acting sympathomimetic amines by monoamine oxidase inhibitors. Brit J Pharmacol 33: 287–303

    PubMed  CAS  Google Scholar 

  • Rao GHR, Einzig S, Redd KR, White JG (1979) Tranylcypromine induced hypertension is not mediated by the inhibition of prostacyclin synthesis. Prostaglandins and Medicine 3: 201–210

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Riederer P, Sandler M, Jellinger K, Seeman D (1978a) Amphetamine and 2-phenylethylamine in post-mortem parkinsonian brain after deprenyl administration. J Neural Transmis 43: 271–278

    CAS  Google Scholar 

  • Reynolds GP, Elsworth JD, Blou K, Sandler M, Lees AJ, Stern G (1978b) Deprenyl is metabolized to methamphetamine and amphetamine in man. Brit J Clin Pharmacol 6: 542–544

    CAS  Google Scholar 

  • Richter D (1937) Adrenaline and monoamine oxidase. Biochem J 31: 2022–2028

    PubMed  CAS  Google Scholar 

  • Riederer P, Reynolds GP (1980) Deprenyl is a selective inhibitor of brain MAO-B in the long term treatment of Parkinson’s disease. Br J Clin Pharmacol 9: 98–99

    Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabo-lism in brains of Parkinson patients treated with 1-deprenyl. J Neurochem 46: 1359–1365

    PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH, Birkmayer W, Jellinger K (1978a) Monoamine oxidase activity during (—) deprenil therapy: human brain post mortem studies. Adv Biochem Psychopharmacology 19: 377–382

    CAS  Google Scholar 

  • Riederer P, Youdim MBH, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978b) On the mode of action of L-deprenyl in the human central nervous system. J Neural Transmis 43: 217–226

    CAS  Google Scholar 

  • Riederer R, Reynolds GP, Youdim MBH (1981) Selectivity of MAO inhibitors in human brain and their clinical consequences. In: Youdim MBH, Paykel ES (eds) Monoamine Oxidase Inhibitors: The State of the Art. Wiley Chichister

    Google Scholar 

  • Richter D (1937) Adrenaline and monoamine oxidase. Biochem J 31: 2022–2028

    PubMed  CAS  Google Scholar 

  • Rinne UK (Ed) (1983) A new approch to the treatment of Parkinson’s disease. Acta Neurol Scand No 95: 7–144

    Google Scholar 

  • Rinne UK, Sirrtola T, Sonninen V (1978) (ö)-Deprenyl treatment of ‘on-off phenomena in Parkinson’s disease. J Neural Transmis 43:253–262

    Google Scholar 

  • Robinson GA, Butcher RW, Sutherland EW (1972) The catecholamines In: (eds) Biochemical Actions of Hormones. vol II. Academic Press New York

    Google Scholar 

  • Rogers KJ, Thornton JA (1969) The interaction between monoamine oxidase inhibitors and narcotic analysis in mice. Brit J Pharmacol 36: 470–480

    CAS  Google Scholar 

  • Roth JA (1978) Inhibition of human brain type B monoamine oxidase by tricyclic psychoactive drugs. Mol Pharmacol 14: 164–171

    PubMed  CAS  Google Scholar 

  • Roth JA (1979) Effect of drugs on inhibition of oxidized and reduced form of MAO. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure Function and Altered Functions, Academic Press New York, pp 153–168

    Google Scholar 

  • Roth JA, Feor K (1978) Deamination of dopamine and its 3–0-methylated derivative by human brain monoamine oxidase. Biochem Pharmacol 27: 1606–1608

    PubMed  CAS  Google Scholar 

  • Roth JA, Gillis CN (1974) Deamination of ß-phenylethylamine by monoamine oxidase Inhibition by imipramine Biochem Pharmacol 23: 2537–2545

    CAS  Google Scholar 

  • Roth JA, Gillis CM (1975) Multiple forms of amine oxidase in perfused rabbit lung. J Pharmac Exp Ther 194: 537–544

    CAS  Google Scholar 

  • Roth J, Whittmore R, Shakarjian M, Eddy B (1979) Inhibition of human brain type A and type B monoamine oxidase by chlorpromazine and metabolites. Commun Psychopharmacol 3: 236–244

    Google Scholar 

  • Russell SM, Davey J, Mayer RJ (1979a) Vectorial orientation of monoamine oxidase in the mitochondrial outer membrane. Biochem J 181: 7–14

    CAS  Google Scholar 

  • Russell SM, Davey J, Mayer RJ (1979b) Immunochemical characterization of monoamine oxidase from human liver, placenta, platelets and brain cortex. Biochem J 181: 15–20

    CAS  Google Scholar 

  • Russell SM, Davey J, Mayer RJ (1979c) The topography and turnover of mitochondrial monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions, Academic Press New York, pp 265–272

    Google Scholar 

  • Sabelli H-C, Giardina WJ, Mosnaim AD, Sabelli NH (1973) A comparison of the function roles of NE, DA and PEA in the central nervous system. Acta Physiol Pol 24: 33–40

    PubMed  CAS  Google Scholar 

  • Sabelli H-C, Borison RL, Diamon BI, Havdala HS, Narasimhachori N (1978) Phenylethylamine and brain function. Biochem Pharmacol 27: 1729–1730

    Google Scholar 

  • Sagara Y, Ito A (1982) In vitro synthesis of monoamine oxidase of rat liver outer mitochondrial membrane. Biochem Biophys Res Commun 109: 1102–1107

    PubMed  CAS  Google Scholar 

  • Salach JI (1979) Monoamine oxidase from beef liver mitochondria; simplified isolation procedure, properties and determination of its cysteinyl flavin content. Arch Biochem Biophys 192: 128–137

    PubMed  CAS  Google Scholar 

  • Salach JI, Detmer K (1979) Chemical characterization of monoamine oxidase from human placental mitochondria. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions Academic Press New York, pp 121–128

    Google Scholar 

  • Salach JI, Singer TP, Yasunobu KT, Minamiura N, Youdim MBH (1976) Cysteinyl flavin in monoamine oxidase from the central nervous system. Ciba Foundation Sympsoum 39 (New Ser) Elsevier Amsterdam, pp 49–50

    Google Scholar 

  • Salach JI, Detmer K, Youdim MBH (1979) The reaction of bovine and rat liver mono-amine oxidase with [14C]-clorgyline and [14C]-deprenyl. Mol Pharmacol 16: 234–241

    PubMed  CAS  Google Scholar 

  • Sandler M, Youdim MBH (1972) Multiple forms of monoamine oxidase: functional significance. Pharmac Rev 24: 331–348

    CAS  Google Scholar 

  • Sandler M, Bonham Carter S, Goodwin BL, Ruthven CRJ, Youdim MBH, Hanington E, Cuthbert MF, Pare CMB (1974) Multiple forms of monoamine oxidase: some in vivo correlations. In: (eds) Neuropharmacology of Monoamines and their Regulatory Enzymes. Raven Press New York

    Google Scholar 

  • Sandler R (1968) Concentration of norepinephrine in the hypothalamus of the rat in relation to the estrus cycle. Endocrinology 83: 1383–1386

    PubMed  CAS  Google Scholar 

  • Sannerstedt R (1967) Hemodynamic effects of pargyline hydrochloride at rest and during exercise in hypertension. Acta Med Scand 181: 699–706

    PubMed  CAS  Google Scholar 

  • Sarai K, Frazer A, Brunswick D, Mendels J (1978) Desmethylimipramine-induced decrease of ß-adrenergic receptor binding in rat cerebral cortex. Biochem. Pharmacol 27: 2179–2181

    CAS  Google Scholar 

  • Savage DD, Mendels J, Frazer A (1980) Decrease in (3H)-serotonin binding in rat brain produced by the repeated administration of either monoamine oxidase inhibitors or centrally acting serotonin agonists. Neuropharmacol 19: 1063–1071

    CAS  Google Scholar 

  • Sawyer ST, Greenawalt JW (1979) Association of monoamine oxidase with lipid. A comparative study of mitochondria from Novikoff hepatoma and rat liver. Biochem Pharmacol 28: 1735–1744

    PubMed  CAS  Google Scholar 

  • Schoepke HG, Wiegand RG (1963) Relation between norepinephrine accumulation or depletion and blood pressure responses in the cat and rat following pargyline administration. Ann NY Acad Sci 107: 924–934

    PubMed  CAS  Google Scholar 

  • Schumann HJ, Philippu A (1962) Release of catecholamines from isolated medullary granules by sympathomimetic amines. Nature 193: 890–891

    Google Scholar 

  • Schurr A (1982) Monoamine oxidase — to B or not to B? Life Sci 30: 1059–1063

    PubMed  CAS  Google Scholar 

  • Schurr A, Pordth O, Krup M, Livne A (1978) The effects of hashish components and their mode of action on monoamine oxidase from the brain. Biochem Pharmacol 27: 2513–2517

    PubMed  CAS  Google Scholar 

  • Schwartz MA, Wyatt RJ, Yang H-YT, Neff NH (1974) Multiple forms of brain monoamine oxidase in schizophrenic and normal individuals. Arch Gen Psychiat 31: 557–560

    PubMed  CAS  Google Scholar 

  • Severina IS (1973) On the substrate-binding sites of the active centre of mitochondrial monoamine oxidase. Eur J Biochem 38: 239–246

    PubMed  CAS  Google Scholar 

  • Severina IS (1979) Mechanism of selective inhibition by clorgyline and deprenyl of the activity of mitochondrial monoamine oxidase and the possible nature of its forms A and B. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 169–163

    Google Scholar 

  • Shalita B, Dikstein S (1979) D-tyrosine prevents hypertension in DOCA-saline treated uninephrectomised rats. Arch 379: 245–250

    CAS  Google Scholar 

  • Shannon WA, Wasserking HL, Selingman AM (1974) The ultrastructural localization of monoamine oxidase (MAO) with tryptamine and a new tetrazolium salt, (2-(2’benzothiazolyl)-5-styryl-3-(4’phthalhydrazidyl) tetrazolium chloride (BSPT). J Histochem Cytochem 22: 170–182

    PubMed  CAS  Google Scholar 

  • Sharman DF (1976) Can the intra and extra-homoneuronal metabolism of catecholamines be distinguished in the mammalian central nervous system? Ciba Found Symp 39, (New Ser.) Elsevier Amsterdam, pp 203–216

    Google Scholar 

  • Shih JC, Eiduson S (1969) Multiple forms of monoamine oxidase in the developing brain. Nature 224: 1309–1310

    PubMed  CAS  Google Scholar 

  • Sierens L, d’Iorio A (1970) Multiple monoamine oxidases in rat liver mitochondria. Can J Biochem 48: 659–663

    PubMed  CAS  Google Scholar 

  • Silberstein SD, Shein HM, Bery KR (1972) Catechol- 0-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells. Brain Res 41: 245–248

    PubMed  CAS  Google Scholar 

  • Silverman RB, Hoffman SJ (1979) Mechanism of inactivation of monoamine oxidase by N-cydopropyl-N-arylalkyl amines In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine oxidase: Structure, Function and Altered Functions, Academic Press New York pp 71–79

    Google Scholar 

  • Silverman RB, Hoffman SJ, Catus WB (1980) A mechanism for mitochondrial mono- amine oxidase catalysed amine oxidation. J Amer Chem Soc 102: 7126–7128

    CAS  Google Scholar 

  • Simpson LL (1978a) Mechanism of the adverse interaction between monoamine oxidase inhibitors and amphetamine. J Pharmacol Exp Ther 205: 392–399

    CAS  Google Scholar 

  • Simpson LL (1978b) Evidence that deprenyl, a type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol 27: 1591–1595

    CAS  Google Scholar 

  • Sinet PM, Heikkila RE, Cohen G (1980) Hydrogen peroxide production by rat brain in vivo. J Neurochem 34: 1421–1428

    PubMed  CAS  Google Scholar 

  • Singer TP (1979) Active site-directed, irreversible inhibitor of monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure Function and Altered Functions. Academic Press New York, pp 7–24

    Google Scholar 

  • Sinha AK, Rose SPR (1972) Monoamine oxidase and cholinesterase activity in neurons and neuropil from rat cerebral cortex. J Neurochm 19: 1607–1610

    CAS  Google Scholar 

  • Sjöqvist F (1965) Psychotropic drugs 2. Interaction between monoamine oxidase (MAO) inhibitor and other substrates. Proc Roy Soc Med 205: 967–978

    Google Scholar 

  • Smith SE, Lambourn J, Typer PJ (1980) Antipyrine elimination by patients under treatment with monoamine oxidase inhibitors. Brit J Clin Pharmacol 9: 21–25

    CAS  Google Scholar 

  • Smith TE, Weissbach H, Udenfriend S (1962) Studies on the mechanism of action of monoamine oxidase: metabolism of N,N-dimethyltryptamine and N,N-dimethyltryptamine-N-oxide. Biochemistry 1: 137–143

    PubMed  CAS  Google Scholar 

  • Snyder SH, Fischer J, Axelrod J (1965) Evidence for the presence of monoamine oxidase in sympathetic nerve endings. Biochem Pharmacol 14: 363–365

    CAS  Google Scholar 

  • Spector S, Hirsch CW, Brodie BB (1963) Association of behavioural effect of pargyline, a non hydrazine MAO inhibitor with increase in brain norepinephrine. Int J Neuropharmacol 2: 81–93

    CAS  Google Scholar 

  • Spector S, Gordon R, Sjoerdsma A, Udenfriend S (1967) End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Mol Pharmacol 3: 549–555

    PubMed  CAS  Google Scholar 

  • Spector S, Tarver S, Berkowitz B (1972) Effect of drugs and physiological factors in disposition of catecholamines in blood vessels. Pharmac Rev 24: 191–202

    CAS  Google Scholar 

  • Squires RF (1972) Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. Adv Biochem Psychopharmacol 5: 355–370

    PubMed  CAS  Google Scholar 

  • Squires RF (1975) Evidence that 5-methoxy, N,N-dimethyltryptamine is a specific substrate for MAO-A in the rat: implications for the indoleamine dependent behavioural syndrome. J Neurochem 24: 47–50

    PubMed  CAS  Google Scholar 

  • Squires RF, Buus Lassen J (1975) The inhibition of A and B forms of MAO in the production of a characteristic behavioural syndrome in rats after L-tryptophan loading. Psychopharmacologia 41: 145–151

    PubMed  CAS  Google Scholar 

  • Stadt MA, Banks PA, Kobes RD (1982) Purification of rat liver monoamine oxidase by octyl glucoside extraction and reconstitution. Arch Biochem Biophys 214: 223–230

    PubMed  CAS  Google Scholar 

  • Staunton J, Summers MC (1978) Stereochemical studies on enzymic reactions. In: Kornberg HL, Metcalfe JC, Northcote DH, Pogson CI, Tripton KF (eds) Techniques in the Life Sciences: Biochemistry, vol Bl/11. Elsevier Amsterdam, pp B116: 1–33

    Google Scholar 

  • Stern IJ, Hollifield RD, Wilk S, Buzard J (1967) The anti-monoamine oxidase effects of furazolidone. J Pharmacol Exp Ther 156: 492–499

    PubMed  CAS  Google Scholar 

  • Stockley I (1974) Monoamine oxidase inhibitors, Part 1: Interactions with sympathomimetic amines. In: Drug (eds) Interactions. Pharmaceutical Press London

    Google Scholar 

  • Strolin Benedetti M, Kan J-P, Keane PE (1979) A new specific reversible type A monoamine oxidase inhibitor: MD 780515. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function, and Altered Functions. Academic Press New York, pp 335–340

    Google Scholar 

  • Student AK, Edwards DJ (1977) Subcellular localization of types A and B monoamine oxidase in rat brain. Biochem Pharmacol 26: 2337–2342

    PubMed  CAS  Google Scholar 

  • Sulser F (1978) Functional aspects of the norepinephrine receptor coupled adenylcyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: molecular approach to an understanding of affective disorders. Pharmakopsychiatrie 11: 43–52

    CAS  Google Scholar 

  • Suzuki O, Hattori H, Oya M, Katsumata Y, Matsumoto T (1979a) Oxidation of ß-phenylethylamine by both types of monoamine oxidase: effects of substrate concentration and pH. Life Sci 25: 1843–1850

    CAS  Google Scholar 

  • Suzuki O, Katsumata Y, Oya M (1979b) Characterization of some biogenic monoamines as substrates for type A and type B monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure Function, and Altered Functions. Academic Press New York, pp 197–204

    Google Scholar 

  • Suzuki O, Matsumoto T, Oya M, Katsumata M, Stepitaklauco M (1980) Monocylcadaverines as substrates for both monoamine oxidase and diamine oxidase. Low rates of activity. Experientia 36: 535–537

    PubMed  CAS  Google Scholar 

  • Swett LR, Martin WB, Taylor JD, Everett GM, Wykes AA, Gladish YC (1963) Struc- ture-activity relations in the pargyline series. Ann NY Acad Sci 107: 891–898

    PubMed  CAS  Google Scholar 

  • Tagliamonte A, Fratta W, del Fiacco M, Gessa GL (1974) Possible stimulatory role of brain dopamine in the copulatory behaviour of male rats. Pharmac Biochem Behav 2: 257–260

    CAS  Google Scholar 

  • Tipton KF (1968a) The prosthetic groups of pig brain mitochondrial monoamine oxidase. Biochem Biophys Acta 159: 451–459

    CAS  Google Scholar 

  • Tipton KF (1968b) The reaction pathway of pig brain mitochondrial monoamine oxidase. Eur J Biochem 5: 316–320

    CAS  Google Scholar 

  • Tipton KF (1971) Monoamine oxidases and their inhibitors. In: Aldridge WN (ed) Mechanisms of Toxicity. MacMillan London, pp 13–27

    Google Scholar 

  • Tipton KF (1972) Some properties of monoamine oxidase. Adv Biochem Psychopharmacol 5: 11–24

    PubMed  CAS  Google Scholar 

  • Tipton KF (1973) Biochemical aspects of monoamine oxidase. Brit Med Bull 29: 116–119

    CAS  Google Scholar 

  • Tipton KF (1975) Monoamine oxidase. In: Smith AD, Blaschko H (eds) Handbook of Physiology, section 7, vol 2, American Physiological Society Washington, pp 667–691

    Google Scholar 

  • Tipton KF (1980) Kinetic mechanism and enzyme function. Biochem Soc Trans 8: 242–245

    PubMed  CAS  Google Scholar 

  • Tipton KF, Della Corte L (1979) Problems concerning the two forms of monoamine oxidase. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 87–99

    Google Scholar 

  • Tipton KF, Mantle TJ (1977) Dynamic properties of monoamine oxidase. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and Function of Monoamine Enzymes, Dekker New York, pp 559–585

    Google Scholar 

  • Tipton KF, Mantle TJ (1981) Inhibition of rat liver monoamine oxidase by clorgyline and deprenyl. In: Youdim MBH, Paykel ES (eds) Monoamine Oxidase Inhibitors: The State of the Art. Wiley Chichester

    Google Scholar 

  • Tipton KF, Spires IPC (1971) The kinetics of 2-phenylethylhydrazine oxidation by monoamine oxidase. Biochem J 125: 521–524

    PubMed  CAS  Google Scholar 

  • Tipton KF, Spires IPC (1972) Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem Pharmacol 21: 268–270

    PubMed  CAS  Google Scholar 

  • Tipton KF, Youdim MBH, Spires IPC (1972) Beef adrenal medulla monoamine oxidase. Biochem Pharmacol 21: 2197–2204

    PubMed  CAS  Google Scholar 

  • Tipton KF, Youdim MBH (1984) The assay of monoamine oxidase activity. In: Parvez S, Nagatsu T, Nagatsu I, Parvez H (eds) Methods in Biogenic Amine Research. Elsevier Amsterdam, pp 441–466

    Google Scholar 

  • Tipton KF, Houslay MD, Garrett NJ (1973) Allotopic properties of human brain monoamine oxidase. Nature 246: 213–214

    CAS  Google Scholar 

  • Tipton KF, Houslay MD, Mantle TJ (1976) The nature and locations of the multiple forms of monoamine oxidase. Ciba Foundation Symposium 39,(New Ser) Elsevier Amsterdam, pp 5–16

    Google Scholar 

  • Tipton KF, Houslay MD, Turner AJ (1977) Metabolism of aldehydes in brain. In: (eds) Essays in Neurochemistry and Neuropharmacology, vol 1. Wiley Chichester, pp 103–138

    Google Scholar 

  • Tipton KF, Fowler CJ, Houslay MD (1982) Specificites of the two forms of monoamine oxidase. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine Oxidase: Basic and Clinical Frontiers. Excerpta Medica Amsterdam, pp 87–99

    Google Scholar 

  • Tipton KF, O’Carroll A-M, Hasan F (1984a) Enzymological and pharmacological aspects of monoamine oxidase. In: Paton W, Mitchell J, Turner P (eds) IUPHAR 9th Inter Cong Pharmac vol 2. MacMillan London, pp 179–185

    Google Scholar 

  • Tipton KF, Dostert P, Strolin-Benedetti M (1984b) Eds. Monoamine Oxidase and Disease. Academic Press London

    Google Scholar 

  • Toyoshima Y, Kinemuchi H, Kamijo K (1979) Nonexistence of a type C monoamine oxidase in rat brain. J Neurochem 32: 1183–1189

    PubMed  CAS  Google Scholar 

  • Trendelenburg U (1972a) Factors influencing the concentration of catecholamines at the receptors. In: Blaschko H, Muscholl E (eds) Catecholamines, Springer Berlin Heidelberg New York, pp 726–761 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Trendelenburg U (1972b) Classification of sympathomimetic amines. In: Blaschko H, Muscholl E (eds) Catecholamines Springer Berlin Heidelberg New York, pp 336–362 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Trendelenburg U (1979) Release induced by phenethylamines. In: Paton DM (ed) The Release of Catecholamines from Adrenergic Neurones, Pergamon Press New York, pp 333–359

    Google Scholar 

  • Trendelenburg U, Draskoczy PR, Graefe KH (1972) The influence of intraneuronal monoamine oxidase on neuronal net uptake of noradrenaline and on sensitivity to noradrenaline. Adv Biochem Psychopharmacol 5: 371–378

    PubMed  CAS  Google Scholar 

  • Trendelenburg U, Graefe KH, Henseling M (1976) The part played by monoamine oxidase in the inactivation of catecholamines in intact tissues. Ciba Foundation Symposium 39 (New Ser.) Elsevier Amsterdam, pp 181–195

    Google Scholar 

  • Tsai TH, Fleming WH (1965) Sympathomimetic actions of monoamine oxidase inhibitors in the isolated nictitating membrane of the cat. Biochem Pharmacol 14: 369–371

    PubMed  CAS  Google Scholar 

  • Turner AJ, Illingworth JA, Tipton KF (1974) Simulation of biogenic amine metabolism in the brain. Biochem J 144: 353–360

    PubMed  CAS  Google Scholar 

  • Ulena H, Kanamura H, Suda S, Nakamura R, Machiyma Y, Takahashi R (1968) Studies on the regional distribution of the monoamine oxidase activity in the brains of schizophrenic patients. Proc Jap Acad 44: 1078–1083

    Google Scholar 

  • Ungar F, Tabakoff B, Alivisatos S (1973) Inhibition of binding of aldehydes of bio-genic amines in tissues. Biochem Pharmacol 22: 1905–1913

    PubMed  CAS  Google Scholar 

  • Uretskiy NJ, Iversen LL (1970) Effects of 6-hydroxydopamine on catecholamine-containing neurones in the rat brain. J Neurochem 17: 269–278

    Google Scholar 

  • Usdin E, Sandler M (1976) Trace amines and the brain. Dekker New York

    Google Scholar 

  • Van Praag HM (1979) Serotonin and pathogenesis of affective disorders. In: Aromatic Amino Acid Hydroxylases and Mental Disease. Wiley London

    Google Scholar 

  • Varga E, Tringer L (1967) Clinical trial of a new type promptly acting psycho energetic agent (phenyl-isoprophylmethyl-propynylamine-HC1, E-250). Acta Med Acad Sci Hung 23: 289–295

    PubMed  CAS  Google Scholar 

  • Von Korff RW (1977) Characteristics of monoamine oxidase of mitochondria isolated from rabbit brain and liver. Biokhimiya 42: 396–402

    Google Scholar 

  • Waldmeier PC, Felner AE (1978) Deprenil: loss of selectivity for inhibition of B-type MAO after repeated treatment. Biochem Pharmacol 27: 801–802

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Feldtrauer JJ, Maitre L (1977) Methylhistamine: evidence for selective deamination by MAO B in the rat brain in vivo. J Neurochem 29, 785–790

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Feiner AE, Maitre L (1981) Long term effects of selective MAO inhibitors on MAO activity and amine metabolism. In: Youdim MBH, Paykel ES (eds). Monoamine Oxidase Inhibitors. The State of Art. Wiley Chichester pp 85–97

    Google Scholar 

  • Walker WH, Kearney EB, Seng RL, Singer TP (1971) The covalently bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl flavin. Eur J Biochem 24: 328–331

    PubMed  CAS  Google Scholar 

  • Watanabe K, Minamiura N, Yasunobu KT (1980) Thiols liberate covalently bonded flavin from monoamine oxidase. Biochem Biophys Res Commun 94: 579–585

    PubMed  CAS  Google Scholar 

  • Weissbach H, Redfield BG, Udenfriend S (1957) Soluble monoamine oxidase; its pro-perties and actions on serotonin. J Biol Chem 229: 953–963

    PubMed  CAS  Google Scholar 

  • Westlund K, Denney R, Kochersperger L, Rose R, Abell C (1985) Distinct monoamine oxidase A und B population in primate brain. Science 230: 180–183

    Google Scholar 

  • Weyler W, Salach JI (1981) Iron content and spectral properties of highly purified bovine liver monoamine oxidase. Arch Biochem Biophys 212: 147–153

    PubMed  CAS  Google Scholar 

  • Wheatley D (1970) Comparative trial of a new monoamine oxidase inhibitor in depression J Psychiat 117: 573–574

    CAS  Google Scholar 

  • White HL, Glassman AT (1977) Multiple binding sites of human brain and liver monoamine oxidase: substrate specificities, selective inhibitions, and attempts to separate enzyme forms. J Neurochem 29: 987–997

    PubMed  CAS  Google Scholar 

  • White HL, Stine DK (1982a) Characterization of active MAO-A and B sites by various biochemical techniques. In Monoamine Oxidase: Basic and Clinical Frontiers, edited by Kamijo K, Usdin E and Nagatsu T, Excerpta Medica, pp 62–73

    Google Scholar 

  • White HL, Stine DK (1982b) Monoamine oxidase A and B as components of a membrane complex. J Neurochem 38: 1429–1436

    CAS  Google Scholar 

  • White HL, Transik RL (1979) Characterization of multiple substrate binding sites of MAO. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Academic Press New York, pp 129–144

    Google Scholar 

  • White HL, Wu JC (1975) Multiple binding sites of human brain monoamine oxidase as indicated by substrate competition. J Neurochem 25: 21–26

    PubMed  CAS  Google Scholar 

  • Wibo M, Duong AT (1979) Semicarbazide-sensitive amine oxidase in rat aorta: a plasma-membrane enzyme. Arch Internat Physiol Biochem 87: 868–869

    CAS  Google Scholar 

  • Williams CH (1974) Monoamine oxidase. I. Specificity of some substrates and inhibitors. Biochem Pharmacol 23: 615–628

    PubMed  CAS  Google Scholar 

  • Williams CH (1977) Beta-phenylethanolamine as a substrate for monoamine oxidase. Biochem Soc Trans 5: 1770–1771

    PubMed  CAS  Google Scholar 

  • Williams CH, Lawson J (1975) Monoamine oxidase. III. Futher studies of inhibition by propargylamines. Biochem Phamacol 24: 1889–1891

    CAS  Google Scholar 

  • Williams D, Gascoigne JG, Williams ED (1975a) A tetrazolium technique for the histochemical demonstration of multiple forms of rat brain monoamine oxidase. Histochem J 7: 585–597

    CAS  Google Scholar 

  • Williams D, Gascoigne JE, Williams ED (1975b) A specific form of rat brain monoamine oxidase in circumventricular structures. Brain Res 100: 231–235

    CAS  Google Scholar 

  • Wilson WE, Agrawal AK, Zeller EA (1979) Androgen modulation of brain monoamine oxidase types A and B in the preweanling rat. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 309–315

    Google Scholar 

  • Wolf WA, Youdim MBH, Kuhn DM (1985) Does brain 5-HIAA indicate serotonin release or monoamine oxidase activity? Eur J Pharmac 109: 381–387

    CAS  Google Scholar 

  • Wojtczak L, Nalecz MJ (1979) Surface charge of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem 94: 99–107

    PubMed  CAS  Google Scholar 

  • Woods RI (1970) The innervation of frog’s heart. I. An examination of the autonomic postganglionic nerve fibres and a comparison of autonomic and sensory ganglionic cells. Proc Roy Soc B176: 43–54

    Google Scholar 

  • Wyatt RJ, Gillin JC, Stoff DM, Moja EA, Tinkelberg JR (1979) Phenylethylamine and the neuropsychiatric disturbances. In: Usdin E, Barchas ID, Hamburg D (eds) Neuroregulators and Psychiatric Disorders. Oxford University Press New York

    Google Scholar 

  • Yagi K, Naoi M (1982a) Crystalline pig liver mitochondrial monoamine oxidase. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine Oxidase: Basic and Clinical Frontiers. Academic Press New Yourk, pp 1–10

    Google Scholar 

  • Yagi K, Naoi M (1982b) Crystallization of a monoamine oxidase purified from pig liver mitochondria. Biochem Int 4: 457–463

    CAS  Google Scholar 

  • Yahr M (1978) Overview of present day treatment of Parkinson’s disease. J Neural Transmiss 43: 227–238

    CAS  Google Scholar 

  • Yamori Y, de Jong W, Yamabe H, Lovenberg W, Sjoerdsma A (1972) Effects of L-dopa and inhibitors of decarboxylase and monoamine oxidase on brain noradrenaline levels and blood pressure in spontaneously hypertensive rats. J Pharm Pharmacol 24: 690–695

    PubMed  CAS  Google Scholar 

  • Yang H-YT, Neff NH (1973) ß-Phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J Pharmacol Exp Ther 187: 365–371

    PubMed  CAS  Google Scholar 

  • Yang H-YT, Neff NH (1974) The monoamine oxidases of brain: selective inhibition with drugs and the consequences on the metabolism of the biogenic amines. J Pharmacol Exp Ther 189: 733–740

    PubMed  CAS  Google Scholar 

  • Yasunobu KT, Igaue I, Gomes B (1968) The purification and properties of beef liver mitochondrial monoamine oxidase. Adv Pharmacol 6A: 43–59

    Google Scholar 

  • Yasunobu KT, Ishizaki M, Minamiura N (1976) The molecular, mechanistic and immunological properties of amine oxidases. Mol Cell Biochem 13: 3–29

    PubMed  CAS  Google Scholar 

  • Yasunobu KT, Watanabe K, Zeidan H (1979) Monoamine oxidase: some new findings. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 251–263

    Google Scholar 

  • Youdim MBH (1972) Multiple forms of monoamine oxidase and their properties. Adv Biochem Psychopharmacol 5: 67–77

    PubMed  CAS  Google Scholar 

  • Youdim MBH (1974) Heterogeneity of rat brain mitochondrial monoamine oxidase. Adv Biochem Psychopharmacol 11: 59–63

    PubMed  CAS  Google Scholar 

  • Youdim MBH (1975) Monoamine deaminating system in mammalian brain. In: Blaschko H (ed) M.T.P. International Review of Science, Biochemistry Section, vol 12. MTP London, pp 169–209

    Google Scholar 

  • Youdim MBH (1976) Rat liver mitochondrial monoamine oxidase—an iron-requiring flavoprotein. In: Singer, TP (eds) Flavins and Flavoproteins. Elsevier Amsterdam

    Google Scholar 

  • Youdim MBH (1977) Tyramine and Psychiatric disorders. In: Usdin E, Barchas TD, Hamburg D (eds) Neuroregulators and Psychiatric Disorders. Oxford University Press New York

    Google Scholar 

  • Youdim MBH (1978) Requirement of iron for monoamine oxidase activity. In: Usdin E, Weiner N, Youdim MBH (eds) Structure and Fuction of Monoamine Enzymes. Dekker New York, pp 587–599

    Google Scholar 

  • Youdim MBH (1979) Functional activity of brain monoamine oxidase. In: Usdin E, Sourkes TL, Youdim MBH (eds) Neuro-Psychopharmacology. Pergamon Press New York

    Google Scholar 

  • Youdim MBH (1980): The use of selctive monoamine oxidase type B inhibitors in the treatment of Parkinson’s disease. In: Usdin E, Sourkes TL, Youdim MBH (eds) Enzymes and Neurotransmitters in Mental Disease. Wiley London

    Google Scholar 

  • Youdim MBH, Collins GGS (1971) Dissociation and reassociation of rat liver mitochondrial monoamine oxidase. Eur J Biochem 18: 73–78

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Finberg JPM (1980) Sites of action of monoamine oxidase inhibitors. In: Littauer UZ, Dudai Y, Silman I, Teichberg VI, Vogel Z (eds) Neurotransmitters and their Receptors. Wiley Chichester, pp 73–87

    Google Scholar 

  • Youdim MBH, Finberg JPM (1982) Monoamine oxidase inhibitor antidepressants. In: Grahame-Smith DG, Cowen PJ (eds) Psychopharmacology I, part 1: Preclinical Psychopharmacology. Excerpta Medica Amsterdam, pp 38–70

    Google Scholar 

  • Youdim MBH, Finberg JPM (1985) Monoamine oxidase inhibitor antidepressants. In: Grahame-Smith DG (ed) Psychopharmacology 2/1. Excerpta Medical Amsterdam, pp 35–70

    Google Scholar 

  • Youdim MBH, Hefez A (1980) Platelet function and MAO activity in psychiatric disorders. In: Rothman A (eds) Platelets: Cellular Response Mechanism and Their Biological Significance. Wiley Chester

    Google Scholar 

  • Youdim MBH, Holman B (1975) The nature of inhibition of cat brain monoamine oxidase by clorgyline. J Neural Transmis 37: 11–24

    CAS  Google Scholar 

  • Youdim MBH, Holzbauer M (1976a) Physiological and pathological changes in tissue monoamine oxidase activity. J Neural Transmis 38: 193–230

    CAS  Google Scholar 

  • Youdim MBH, Lagnado JR (1972) The effects of tetrazolium salts on monoamine oxidase activity. Adv Biochem Psychopharmac 5: 289–292

    CAS  Google Scholar 

  • Youdim MBH, Oppenheim B (1981) The effect of 1,2,3,4-tetrahydro-ß-carbolines on monoamine metabolism in the human platelet and platelet aggregation. Neuroscience. 6: 801–810

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Sourkes TL (1966) Properties of purified soluble monoamine oxidase. Can J Biochem 44: 1397–1400

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Paykel ES (1981) Monoamine oxidase inhibitors: The State of the Art. Wiley Chichester

    Google Scholar 

  • Youdim MBH, Riederer P (1986) MAO type B: its relation to MPTP induced and classical Parkinsonism. In: Markey SP, Castagnoli N, Trevor AJ, Kopin IJ (eds) A Neurotoxin Producing a Parkinsonism Syndrome. Academic Press London, pp 203–213

    Google Scholar 

  • Youdim MBH, Sourkes TL (1972) The flavin prosthetic groups of purified rat liver mitochondrial monoamine oxidase Adv Biochem Psychopharmacol 5: 45–43

    CAS  Google Scholar 

  • Youdim MBH, Woods HF (1975) The influence of tissue environments on the roles of meteabolic processes and the properties of enzymes. Biochem Pharmacol 24: 317–323

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M (1969) Multiple forms of rat brain monoamine oxidase. Nature 223: 626–628

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M (1971) Monoamine oxidase, multiple forms and selective inhibitors. Biochem J 121: 134–136

    Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M (1972c) Isoenzymes of soluble mitochondrial monoamine oxidase. In: Shugar D (ed) Enzymes and Isoenzymes. Structure, Properties and Function. Academic Press New York, pp 281–289

    Google Scholar 

  • Youdim MBH, Collins GGS, Sandler M, Bevan Jones AB, Pare CMB, Nicholson WJ (1972b) Human brain monoamine oxidase: multiple forms and selective inhibitors. Nature 236: 225–228

    CAS  Google Scholar 

  • Youdim MBH, Woods HF, Mitchell B, Grahame-Smith DG (1975) Human platelet monoamine oxidase activity in iron-deficiency anaemia. Clin Sci Mol Med 48: 289–295

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Harari RR, Bakhle YS (1979a) Comparison of monoamine oxidase activity in perfused organ and in vitro. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York pp 361–377

    Google Scholar 

  • Youdim MBH, Aronson JK, Blau K, GreeN AR, Grahame-Smith DG (1979b) Tranylcypromine (Palmate’) overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasma. Psychological Medicine 9: 377–382

    CAS  Google Scholar 

  • Youdim MBH, Ben-Harari RR, Bakhle YS (1980) Inactivation of monoamines by the lung. In: Porter R, Knight T (eds) Metabolic Activities of the Lung. Ciba Foundation Symposium 78 (New series). Elsevier Amsterdam pp 105–128

    Google Scholar 

  • Yu PH (1979) Effect of lipid-depletion on type-A and type-B monoamine oxidase in rat heart and bovine liver mitochondria. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function, and Altered Functions. Academic Press, pp 233–244

    Google Scholar 

  • You PH, Boulton AA (1979) Activation of platelet monoamine oxidase by plasma in the human Life Sci 25: 31–36

    Google Scholar 

  • Zeller EA (1938) Über den enzymatischen Abbau von Histamin und Diaminen. Helv Chim Acta 21: 880–890

    CAS  Google Scholar 

  • Zeller EA (1963a) Diamine oxidase. In: Boyer PD, Lardy H, Myrbäck K (eds) The Enzymes 2nd Ed, vol 8. Academic Press New York, pp 313–335

    Google Scholar 

  • Zeller EA (1963b) A new approach to the analysis of the interaction between mono- amine oxidase and its substrates and inhibitors. Ann NY Acad Sci 107: 811–820

    CAS  Google Scholar 

  • Zeller EA (1979) Classification and nomenclature of monoamine oxidase and other amine oxidases. In: Singer TP, von Korff RW, Murphy DL (eds) Monoamine Oxidase: Structure, Function, and Altered Functions. Academic Press New York, pp 531–537

    Google Scholar 

  • Zeller EA, Arora KL, Gürne DH, Huprikar SA (1979) On the topochemistry of the active site of monoamine oxidases types A und B. In: Singer TP, von Korff RW, Murphy DL (es) Monoamine Oxidase: Structure, Function and Altered Functions. Academic Press New York, pp 101–120

    Google Scholar 

  • Zirkle CL, Kaiser C (1964) Monoamine oxidase inhibitors (nonhydrazines). In: Gordon M (ed) Psychopharmacological Agents, vol 1. Academic Press New York, pp 445–554

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Youdim, M.B.H., Finberg, J.P.M., Tipton, K.F. (1988). Monamine Oxidase. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines I. Handbook of Experimental Pharmacology, vol 90 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46625-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46625-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46627-4

  • Online ISBN: 978-3-642-46625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics