Skip to main content

The Enterohepatic Circulation

  • Chapter
Concepts in Biochemical Pharmacology

Abstract

Substances are said to undergo an enterohepatic circulation (EHC) when they are excreted into the bile, pass into the lumen of the intestine, are reabsorbed and then return to the liver via the circulation. Many endogenous and exogenous substances can undergo an EHC. Among the endogenous substances are the bile salts, the biliary lipids and biliary phospholipids; the degree of reabsorbability varies considerably for each of these types of substances. Other endogenous substances include estrone and estriol (Sandberg et al., 1967), folic acid (Baker et al., 1965; Herbert, 1965), vitamin B12 (Grasbeck et al., 1958), and urobilinogen (Lester et al., 1965). Ibrahim and Watson (1968) demonstrated that an EHC exists for protoporphyrin in man. The oral administration of cholestyramine, an anionic exchange resin, improves the clinical condition of patients suffering from porphyria cutanea tarda (Stathers, 1966) or from erythropoietic protoporphyria (Lischner, 1966) apparently by interrupting the EHC for the porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambre, J.J., Fischer, L.J.: Glutethimide intoxication: Plasma levels of glutethimide and a metabolite in humans, dogs and rats. Res. Comm. chem. Path. Pharmacol. 4, 307–326 (1972).

    CAS  Google Scholar 

  • Arai, K., Golab, T., Layne, D.S., Prncus, G.: Metabolic fate of orally administered H8-norethynodrel in rabbits. Endocrinology 71, 639–648 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Baker, S. J., Kumar, S., Swaminathan, S. P.: Excretion of folic acid in bile. Lancet 1965 I, 685.

    Article  Google Scholar 

  • Baselt, R.C., Casarett, L. J.: Biliary and urinary elimination of methadone and its metabolites in the rat. Biochem. Pharmacol. 21, 2705–2712 (1972).

    Article  CAS  Google Scholar 

  • Becker, B. A., Hindman, K.L., Gibson, J.E.: Enhanced mortality of selected nervous system depressants in hypoexcretory mice. J. pharm. Sci. 57, 1010–1012 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, S.: Metabolism of bile acids. Fed. Proc. 21, 28–32 (Suppl. No. II) (1962).

    CAS  Google Scholar 

  • Berthelot, P., Erlinger, S., Dhumeaux, D., Preauz, A.-M.: Mechanism of phenobarbital-induced hypercholeresis in the rat. Amer. J. Physiol. 219, 809–813 (1970).

    PubMed  CAS  Google Scholar 

  • Borgstrom, G., Dahlqvist, A., Lundh, G., Sjovall, J.: Studies of intestinal digestion and absorption in the human. J. clin. Invest. 36, 1521–1536 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Bremer, J.: Species differences in the conjugation of free bile acids with taurine and glycine. Biochem. J. 63, 507–513 (1956).

    PubMed  CAS  Google Scholar 

  • Caldwell, J. H., Bush, C. A., Greenberger, N.J.: Interruption of the enterohepatic circulation of digitoxin by cholestyramine. II. Effect on metabolic disposition of tritium-labeled digitoxin and cardiac systolic intervals in man. J. clin. Invest. 50, 2638–2644 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, J.H., Dring, L.G., Williams, R. T.: Biliary excretion of amphetamine and methamphetamine in the rat. Biochem. J. 129, 25–29 (1972).

    PubMed  CAS  Google Scholar 

  • Caldwell, J. H., Greenberger, N.J.: Interruption of the enterohepatic circulation of digitoxin by cholestyramine. I. Protection against lethal digitoxin intoxication. J. clin. Invest. 50, 2626–2637 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Castle, M.C., Lage, G.L.: Enhanced excretion of digitoxin following spironolactone as it relates to the prevention of digitoxin toxicity. Res. Coram, chem. Path. Pharmacol. 5, 99–108 (1973).

    CAS  Google Scholar 

  • Charytan, C.: The enterohepatic circulation in glutethimide intoxication. Clin. Pharmacol. Ther. 11, 816–820 (1970).

    PubMed  CAS  Google Scholar 

  • Clark, A.G., Fischer, L. J., Millburn, P., Smith, R.L., Williams, R.T.: The role of gut flora in the enterohepatic circulation of stilboestrol in the rat. Biochem. J. 112, 17P (1969).

    PubMed  CAS  Google Scholar 

  • Cook, D. A., Hagerman, L.M., Schneider, D.L.: Effect of dietary taurine on fecal bile salt excretion in rats and hamsters fed cholestyramine. Proc. Soc. exp. Biol. (N. Y.) 138, 830–834 (1971).

    CAS  Google Scholar 

  • Cook, D. A., Hagerman, L.M., Schneider, D.L.: Preferential retention of taurine-conjugated bile salts by cholestyramine in the rat ileum. Proc. Soc. exp. Biol. (N. Y.) 139, 70–73 (1972).

    CAS  Google Scholar 

  • Crew, M.C., Gala, E.L., Haynes, L.J., Dicarlo, F.J.: Biliary excretion and biotransformation of pentaerythritol trinitrate in rats. Biochem. Pharmacol. 20, 3077–3089 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Denbesten, L.: A technic for repeated bile collections from an intact enterohepatic circulation. Proc. Soc. exp. Biol. (N. Y.) 138, 208–209 (1971).

    CAS  Google Scholar 

  • Dietschy, J.M.: Mechanisms for the intestinal absorption of bile acids. J. Lipid Res. 9, 297–309 (1968).

    PubMed  CAS  Google Scholar 

  • Dobbs, H.E., Hall, J. M.: Metabolism and biliary excretion of etorphine (M99-Reckitt) an extremely potent morphine-like drug. Proc. Europ. Soc. Study Drug Toxicity 10, 77–86 (1969).

    CAS  Google Scholar 

  • Dobbs, H.E., Hall, J.M., Steiger, B.: Enterohepatic circulation of etorphine, a potent analgesic, in the rat. Proc. Europ. Soc. Study Drug Toxicity 11, 73–79 (1970).

    Google Scholar 

  • Dougherty, J. E., Flanagan, W.J., Murphy, M.L., Bulloch, R. T., Dalrymphe, G.L., Beard, O.W., Perkins, W.H.: Tritiated digoxin. XIV. Enterohepatic circulation, absorption, and excretion studies in human volunteers. Circulation 42, 867–873 (1970).

    Google Scholar 

  • Dowling, R.H.: The enterohepatic circulation. Gastroenterology 62, 122–140 (1972).

    PubMed  CAS  Google Scholar 

  • Dowling, R.H., Mack, E., Picott, J., Berger, J., Small, D.M.: Experimental model for the study of the enterohepatic circulation of bile in rhesus monkeys. J. Lab. clin. Med. 72, 169–176 (1968).

    PubMed  CAS  Google Scholar 

  • Eisenbrandt, L.L., Adler, T.K., Elliott, H.W., Abdou, I.A.: The role of the gastrointestinal tract in the excretion of C14-labeled methadone by rats. J. Pharmacol, exp. Ther. 98, 200–205 (1950).

    CAS  Google Scholar 

  • Eriksson, H.: Absorption and enterohepatic circulation of neutral steroids in the rat. Europ. J. Biochem. 19, 416–423 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Eyssen, H., Evrard, E., Vanderhaeghe, H.: Cholesterol-lowering effects of N-methylated neomycin and basic antibiotics. J. Lab. clin. Med. 68, 753–768 (1966).

    PubMed  CAS  Google Scholar 

  • Figueroa, W.G., Thompson, J. H.: Biliary iron excretion in normal and ironloaded rats after desferoxamine and CaDTPA. Amer. J. Physiol. 215, 807–810 (1968).

    PubMed  CAS  Google Scholar 

  • Fischer, L.J., Kent, T.H., Weissinger, J.L.: Absorption of diethylstilbestrol and its glucuronide conjugate from the intestines of five- and twenty-five-day-old rats. J. Pharmacol. exp. Ther. 185, 163–170 (1973).

    PubMed  CAS  Google Scholar 

  • Fischer, L. J., Millburn, P.: Stilboestrol transport and glucuronide formation in everted sacs of rat intestine. J. Pharmacol, exp. Ther. 175, 267–275 (1970).

    CAS  Google Scholar 

  • Fischer, L.J., Millburn, P., Smith, R.L., Williams, R.T.: The fate of [14C] stilboestrol in the rat. Biochem. J. 100, 69P (1966).

    CAS  Google Scholar 

  • Fischer, L. J., Weissinger, J.L., Kent, T.H.: The role of intestinal β-glucuronidase in the absorption of diethylstilbestrol glucuronide in immature rats. Toxicol, appl. Pharmacol. 19, 396–397 (1971).

    Google Scholar 

  • Eorman, D.T., Garvin, J.E., Forestner, J.E., Taylor, C.B.: Increased excretion of fecal bile acids by an oral hydrophilic colloid. Proc. Soc. exp. Biol. (N. Y.) 127, 1060–1063 (1968).

    Google Scholar 

  • Gibson, J.E., Becker, B.A.: Demonstration of enhanced lethality of drugs in hypoexcretory animals. J. pharm. Sci. 56, 1503–1505 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Glasser, J.E., Weiner, I. M., Lack, L.: Comparative physiology of intestinal taurocholate transport. Amer. J. Physiol. 208, 359–362 (1965).

    PubMed  CAS  Google Scholar 

  • Glassman, J.M., Warren, G.H., Rosenman, S.B., Agersborg, H.P.K.: Pharmacology and distribution of WY-3277 (nafcillin): 6-(2-ethoxyl-l-naphthamido) penicillanic acid. Toxicol. appl. Pharmacol. 6, 220–231 (1964).

    CAS  Google Scholar 

  • Goldstein, J. A., Taurog, A.: Enhanced biliary excretion of thyroxine glucuronide in rats pretreated with benzpyrene. Biochem. Pharmacol. 17, 1049–1065 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Grasbeck, R., Nyberg, W., Reizenstein, P.: Biliary and fecal vitamin B12 excretion in man. An isotope study. Proc. Soc. exp. Biol. (N. Y.) 97, 780–784 (1958).

    CAS  Google Scholar 

  • Greenberger, N.J., Thomas, F.B.: Biliary excretion of sH-digitoxin: Modification by bile salts and phenobarbital. J. Lab. clin. Med. 81, 241–251 (1973).

    PubMed  CAS  Google Scholar 

  • Hanahan, D.J., Daskalakis, E.G., Edwards, T., Dauben, H.J., Jr.: The metabolic pattern of C14-diethylstilbestrol. Endocrinology 53, 163–170 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Hardison, W.G.M., Apter, J.T.: Micellar theory of biliary cholesterol excretion. Amer. J. Physiol. 222, 61–67 (1972).

    PubMed  CAS  Google Scholar 

  • Hashim, S.A., Van Itallte, T. B.: Cholestyramine resin therapy for hypercholesteremia. J. Amer. med. Ass. 192, 289–293 (1965).

    Article  CAS  Google Scholar 

  • Herbert, V.: Excretion of folic acid in bile. Lancet 1965 I, 913.

    Google Scholar 

  • Hofmann, A. F.: Clinical implications of physicochemical studies on bile salts. Gastroenterology 48, 484–494 (1965).

    PubMed  CAS  Google Scholar 

  • Hofmann, A.P.: The syndrome of ileal disease and the broken enterohepatic circulation: Cholerheic enteropathy. Gastroenterology 52, 752–757 (1967).

    PubMed  CAS  Google Scholar 

  • Hofmann, A.F., Small, D.M.: Detergent properties of bile salts: correlation with physiological function. Ann. Rev. Med. 18, 333–376 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Holder, G.M., Ryan, A. J., Watson, T.R., Wiebe, L.L.: The biliary metabolism of butylated hydroxytoluene (3, 5-di-t-butyl-4-hydroxytoluene) and its derivatives in the rat. J. Pharm. Pharmacol. 22, 832–838 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hucker, H.B., Zacchei, A.G., Cox, S.V., Brodie, D.A., Cantwell, N.H.R.: Studies on the absorption, distribution and excretion of indomethacin in various species. J. Pharmacol. exp. Ther. 153, 237–249 (1966).

    CAS  Google Scholar 

  • Huff, J. W., Gilfillan, J. L., Hunt, V. M.: Effect of cholestyramine, a bile acid binding polymer on plasma cholesterol and iecal bile acid excretion in the rat. Proc. Soc. exp. Biol. (N. Y.) 114, 352–355 (1963).

    CAS  Google Scholar 

  • Ibrahim, G. W., Watson, C. J.: Enterohepatic circulation and conversion of protoporphyrin to bile pigment in man. Proc. Soc. exp. Biol. (N. Y.) 127, 890–895 (1968).

    CAS  Google Scholar 

  • Jansen, G.R., Zanetti, M.E.: Cholestyramine in dogs. J. pharm. Sci. 54, 863–867 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Katzung, B.G., Meyers, F.H.: Excretion of radioactive digitoxin by the dog. J. Pharmacol. exp. Ther. 149, 257–262 (1965).

    PubMed  CAS  Google Scholar 

  • Keberle, H., Hoffmann, K., Bernhard, K.: The metabolism of glutethimide (Doriden). Experientia (Basel) 18, 105–111 (1962).

    Article  CAS  Google Scholar 

  • Klaassen, C.D.: Biliary flow after microsomal enzyme induction. J. Pharmacol, exp. Ther. 168, 218–223 (1969).

    CAS  Google Scholar 

  • Klaassen, C.D.: Effects of phénobarbital on the plasma disappearance and biliary excretion of drugs in rats. J. Pharmacol, exp. Ther. 175, 289–300 (1970a).

    CAS  Google Scholar 

  • Klaassen, C.D.: Plasma disappearance and biliary excretion of sulfobromophthalein and phenol-3, 6-dibromophthalein disulfonate after microsomal enzyme induction. Biochem. Pharmacol. 19, 1241–1249 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • Klaassen, C.D.: Studies on the increased biliary flow produced by phénobarbital in rats. J. Pharmacol, exp. Ther. 176, 743–751 (1971a).

    CAS  Google Scholar 

  • Klaassen, C.D.: Does bile acid secretion determine canalicular bile production in rats ? Amer. J. Physiol. 220, 667–673 (1971 b).

    PubMed  CAS  Google Scholar 

  • Klaassen, C.D.: Comparison of the toxicity of chemicals in newborn rats to bile duct-ligated and sham-operated rats and mice. Toxicol, appl. Pharmacol. 24, 37–44 (1973).

    CAS  Google Scholar 

  • Klaassen, C.D., Plaa, G.L.: Studies on the mechanism of phenobarbital-enhanced sulfobromophthalein disappearance. J. Pharmacol, exp. Ther. 161, 361–366 (1968).

    CAS  Google Scholar 

  • Lack, L., Weiner, I.M.: In vitro absorption of bile salts by small intestine of rats and guinea pigs. Amer. J. Physiol. 200, 313–317 (1961).

    PubMed  CAS  Google Scholar 

  • Lack, L., Weiner, I.M.: Intestinal bile salt transport: structure-activity relationships and other properties. Amer. J. Physiol. 210, 1142–1152 (1966).

    PubMed  CAS  Google Scholar 

  • Lack, L., Weiner, I.M.: Role of the intestine during the enterohepatic circulation of bile salts. Gastroenterology 52, 282–287 (1967).

    PubMed  CAS  Google Scholar 

  • Ladomery, L.G., Ryan, A. J., Wright, S.E.: The excretion of [14C] butylated hydroxytoluene in the rat. J. Pharm. Pharmacol. 19, 383–387 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Layne, D.S., Golab, T., Arai, K., Pincus, G.: The metabolic fate of orally administered 3H-norethynodrel and 3H-norethindrone in humans. Biochem. Pharmacol. 12, 905–911 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Lester, R., Schumer, W., Schmid, R.: Intestinal absorption of bile pigments. IV. Urobilinogen absorption in man. New Engl. J. Med. 272, 939–943 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Levine, W.G.: Metabolism and biliary excretion of N-2-fluorenylacetamide and N-hydroxy-2-fluorenylacetamide. Life Sci. 10, 727–735 (1971).

    Article  CAS  Google Scholar 

  • Levine, W.G., Millburn, P., Smith, R.L., Williams, R.T.: The role of the hepatic endoplasmic reticulum in the biliary excretion of foreign compounds by the rat. The effect of phenobarbitone and SKF 525-A (diacetylaminoethyl diphenylpropylacetate). Biochem. Pharmacol. 19, 235–244 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lindstedt, S.: The turnover of cholic acid in man. Bile acids and steroids, 51. Acta physiol. Scand. 40, 1–9 (1957).

    Article  Google Scholar 

  • Lischner, H.W.: Cholestyramine and porphyrin-binding. Lancet 1966II, 1079–1080.

    Article  Google Scholar 

  • March, C.H., Elliott, H. W.: Distribution and excretion of radioactivity after administration of morphine-N-methyl C14 to rats. Proc. Soc. exp. Biol. (N. Y.) 86, 494–497 (1954).

    CAS  Google Scholar 

  • Moore, R.B., Crane, C.A., Frantz, I.D., Jr.: Effect of cholestyramine on the fecal excretion of intravenously administered cholesterol-4–14C and its degradation products in a hyper-cholesterolemic patient. J. clin. Invest. 47, 1664–1671 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Norman, A., Sjovall, J.: On the transformation and enterohepatic circulation of cholic acid in the rat: Bile acids and steroids 68. J. biol. Chem. 233, 872–885 (1958).

    PubMed  CAS  Google Scholar 

  • Okita, G.T.: Species difference in duration of action of cardiac glycosides. Fed. Proc. 26, 1125–1130 (1967).

    PubMed  CAS  Google Scholar 

  • Okita, G.T., Talso, P.J., Curry, J.H., Jr., Smith, F.D., Jr., Geilling, E.M.K.: Metabolic fate of radioactive digitoxin in human subjects. J. Pharmacol, exp. Ther. 115, 371–379 (1955).

    CAS  Google Scholar 

  • Papapetrou, P.D., Marchand, B., Gavras, H., Alexander, W.D.: Biliary excretion of 35S-labelled propylthiouracil, methimazole and Carbimazole in untreated and pentobarbitone pretreated rats. Biochem. Pharmacol. 21, 363–377 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Plaa, G.L.: Biliary and other routes of excretion of drugs. In: Ladu, B.N., Mandel, H.G., Way, E.L. (Eds.): Fundamentals of drug metabolism and drug disposition, pp. 131–145. Baltimore: Williams and Wilkins 1971.

    Google Scholar 

  • Playoust, M.R., Isselbacher, K.J.: Studies on the transport and metabolism of conjugated bile salts by intestinal mucosa. J. clin. Invest. 43, 467–476 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Powell, R.C., Nunes, W.T., Harding, R.S., Vacca, J.B.: The influence of non-absorbable antibiotics on serum lipids and the excretion of neutral sterols and bile acids. Amer. J. clin. Nutr. 11, 156–168 (1962).

    PubMed  CAS  Google Scholar 

  • Redinger, R.N., Small, D.M.: Primate biliary physiology. VIII. The effect of phenobarbital upon bile salt synthesis and pool size, biliary lipid secretion, and bile composition. J. clin. Invest. 52, 161–172 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. J., Plaa, G.L.: Effect of phenobarbital on the excretion of an exogenous bilirubin load. Biochem. Pharmacol. 16, 827–835 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Roe, D. A.: The clinical and biochemical significance of taurine excretion in psoriasis. J. invest. Derm. 39, 537–542 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Samuel, P., Steiner, A.: Effect of neomycin on serum cholesterol level of man. Proc. Soc. exp. Biol. (N. Y.) 100, 193–195 (1959).

    CAS  Google Scholar 

  • Samuel, P., Waithe, W.I.: Reduction of serum cholesterol concentrations by neomycin, para-aminosalicylic acid and other antibacterial drugs in man. Circulation 24, 578–591 (1961).

    PubMed  CAS  Google Scholar 

  • Sandberg, A.A., Kirdani, R.Y., Back, N., Weyman, P., Slaunwhite, W.R., Jr.: Biliary excretion and enterohepatic circulation of estrone and estriol in rodents. Amer. J. Physiol. 213, 1138–1142 (1967).

    PubMed  CAS  Google Scholar 

  • Small, D.M.: Physiochemical studies of cholesterol gallstone formation. Gastroenterology 52, 607–610 (1967).

    CAS  Google Scholar 

  • Smith, D.S., Peterson, R.E., Fujlmoto, J.M.: Species differences in the biliary excretion of morphine, morphine-3-glucuronide and morphine-3-ethereal sulfate in the cat and rat. Biochem. Pharmacol. 22, 485–492 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.L.: Excretion of drugs in bile. In: Brodle, B.B., Gillette, J.R., Mitchell, J.R. (Eds.): Concepts of biochemical pharmacology, Handbook of experimental pharmacology, Vol. 28, Part 1, pp. 354–389. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Stathers, G.M.: Porphyrin-binding effect of cholestyramine. Results of in-vitro and in-vivo studies. Lancet 1966 II, 780–783.

    Article  Google Scholar 

  • Steiner, A., Howard, E., Akgun, S.: Effect of antibiotics on the serum cholesterol concentration of patients with atherosclerosis. Circulation 24, 729–735 (1961).

    PubMed  CAS  Google Scholar 

  • Stewart, G.T., Harrison, P.M.: Excretion and re-excretion of a broad spectrum penicillin in bile. Brit. J. Pharmacol. 17, 414–419 (1961).

    PubMed  CAS  Google Scholar 

  • Stowe, C.M., Plaa, G.L.: Extrarenal excretion of drugs and chemicals. Ann. Rev. Pharmacol. 8, 337–356 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R.Q., Sturtevant, M., Bird, O.D., Glazko, A.J.: The effect of metabolites of chloramphenicol (Chloromycetin) on the thyroid of the rat. Endocrinology 55, 665–681 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, E. J., Flanagan, T.L., Novice, W. J., Maass, A.R.: Hepatic secretion and urinary excretion of three S35-labeled phenothiazines in the dog. J. pharm. Sci. 53, 1211–1213 (1964).

    Article  Google Scholar 

  • Way, E.L., Adler, T.K.: The pharmacologic implications of the fate of morphine and its surrogates. Pharmacol. Rev. 12, 383–446 (1960).

    PubMed  CAS  Google Scholar 

  • Williams, R. T., Millburn, P., Smith, R.L.: The influence of enterohepatic circulation on toxicity of drugs. Ann. N. Y. Acad. Sci. 123, 110–124 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Winder, C.V., Kaump, D.H., Glazko, A.J., Holmes, E.L.: Pharmacology of the fenamates. Ann. phys. Med. (Supplement) 7–49 (1966).

    Google Scholar 

  • Wood, P., Shioda, R., Estrich, D., Splitter, S.: The influence of oral cholestyramine on human bile composition. Clin. Res. 17, 162 (1969).

    Google Scholar 

  • Woods, L. A.: Distribution and fate of morphine in non-tolerant and tolerant dogs and rats. J. Pharmacol, exp. Ther. 112, 158–175 (1954).

    CAS  Google Scholar 

  • Wyngaarden, J.B., Petersen, R.E., Wolf, A. R.: Physiologic disposition of radiometabolites of hydrocortisone-4-C14 in the rat and guinea-pig. J. biol. Chem. 212, 963–972 (1955).

    PubMed  CAS  Google Scholar 

  • Yesaer, D.W., Callahan, M., Remington, L., Kensler, C. J.: Role of the enterohepatic cycle of indomethacin on its metabolism, distribution in tissues and its excretion by rats, dogs and monkeys. Biochem. Pharmacol. 19, 1579–1590 (1970).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Plaa, G.L. (1975). The Enterohepatic Circulation. In: Gillette, J.R., Mitchell, J.R. (eds) Concepts in Biochemical Pharmacology. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 28 / 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46314-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46314-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46316-7

  • Online ISBN: 978-3-642-46314-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics