Skip to main content

Genes That Control High Level Developmental Switches

  • Conference paper
Evolution and Development

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 22))

Abstract

The process of segmentation in the embryos of insects, specifically Drosophila melanogaster, can be considered a model system for analyzing the genetic regulation of development. Segmentation of the embryo results in the basic metameric organization seen in all arthropods. Mutations have been recovered and characterized which affect the polarity of the entire embryo in both the anterior-posterior and dorsalventral axes. Other mutations reveal genes which are important in the specification of the number and polarity of body segments. Finally, there are a number of loci (homoeotic genes) which are required for each segment to achieve the proper identity. Such genes have been identified by mutations that cause or allow one segment or set of segmental derivatives to be transformed into the likeness of another homologous segment. The basic polarity of the embryo is apparently specified in the egg by the maternal genome during oogenesis. During early development this basic plan is elaborated on by the zygotic genome. This elaboration can be envisioned to occur as two genetically controlled, integrated series of events. The embryo is progressively divided into a series of developmental fields that correspond to specific subregions of the embryo. At some time, the fields correspond to regions the width of two adjacent metameres. These fields define the domains of activation of various homoeotic genes which specify segment identity. The identity of a particular segment and its derivatives is dependent on the expression of batteries of genetic information. These batteries are activated or repressed by the products of the homoeotic loci and represent the specific repertoire of active “structural” genes in each segment. The homoeotic and segment patterning loci can be viewed as a set of switches which are necessary for the proper reading and interpretation of positional information in the early embryo. This interpretive function is in turn necessary for the proper patterned response of cells during the ontogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bull, A. 1966. Bicaudal, a genetic factor which affects the polarity of the embryo in Drosophila melanogaster. J. Exp. Zool. 161: 221–241.

    Article  Google Scholar 

  2. French, V.; Bryant, P.; and Bryant, S. 1976. A theory of pattern regulation in epimorphic fields. Science 193: 969–981.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Bellido, A. 1977. Homoeotic and atavic mutations in insects. Am. Zool. 17: 613–629.

    Google Scholar 

  4. Garcia-Bellido, A., and Ripoll, P. 1978. Cell lineage and differentiation in Drosophila. In Results and Problems in Cell Differentiation, vol. 9, pp. 119–156. Berlin: Springer-Verlag.

    Google Scholar 

  5. Hadorn, E. 1978. Transdetermination. In The Genetics and Biology of Drosophila, eds. M. Ashburner and T. Wright, vol. 2c. London: Academic Press.

    Google Scholar 

  6. Herth, W., and Sander, K. 1973. Mode and timing of body pattern formation (regionalization) in the early embryonic development of cyclorrhaphic dipterans (Protophormia, Drosophila). Wilhelm Roux Arch. 172: 1–27.

    Article  Google Scholar 

  7. Illmensee, K. 1978. Drosophila chimeras and the problem of determination. In Results and Problems in Cell Differentiation, vol. 9, pp. 51–69. Berlin: Springer-Verlag.

    Google Scholar 

  8. Kauffman, S.; Shymko, R.; and Trabert, K. 1978. Control of sequential compartment formation in Drosophila. Science 199: 259–270.

    Article  PubMed  CAS  Google Scholar 

  9. King, M.-C., and Wilson, A. 1975. Evolution at two levels in humans and chimpanzees. Science 188: 107–116.

    Article  PubMed  CAS  Google Scholar 

  10. Lamb, M., and Laird, C. 1976. Increase in nuclear poly(A)-containing RNA at syncytical blastoderm in Drosophila melanogaster embryos. Dev. Biol. 52: 31–42.

    Article  PubMed  CAS  Google Scholar 

  11. Lewis, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis, R.; Wakimoto, B.; Denell, R.; and Kaufman, T. 1980. Genetic analysis of the Antennapedia gene complex (ANT-C) and adjacent chromosomal regions of Drosophila melanogaster. II Polytene chromosome segments 84A-84B1,2. Genetics 95: 383–397.

    CAS  Google Scholar 

  13. Lindsley, D., and Grell, E. 1968. Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. No. 627.

    Google Scholar 

  14. Morata, G., and Lawrence, P. 1977. Homoeotic genes, compartments and cell determination in Drosophila. Nature 2j5: 211–216.

    Article  Google Scholar 

  15. Nüsslein-Volhard, C. 1979. Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. In Determinants of Spatial Organization, eds. S. Subtitny and I. R. Konigsberg. Symposium of the Society for Developmental Biology, vol. 37, pp. 185–211. New York: Academic Press.

    Google Scholar 

  16. Nüsslein-Volhard, C., and Weischaus, E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

    Article  PubMed  Google Scholar 

  17. Ouweneel, W. 1976. Developmental genetics of homoeosis. Adv. Genet. 18: 179–248.

    Article  PubMed  CAS  Google Scholar 

  18. Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Adv. Insect. Phys. 12: 125–238.

    Article  Google Scholar 

  19. Schubiger, G., and Wood, W. 1977. Determination during early embryogenesis in Drosophila melanogaster. Am. Zool. 17: 565–576.

    Google Scholar 

  20. Shearn, A. 1978. Mutational dissection of imaginai disc development. Iri The Genetics and Biology of Drosophila, eds. M. Ashburner and T. Wright, vol. 2c. London: Academic Press.

    Google Scholar 

  21. Turner, F. R., and Mahowald, A. 1976. Scanning electron microscopy of Drosophila melanogaster embryogenesis. I The structure of the egg envelopes and the formation of the cellular blastoderm. Dev. Biol. 50: 95–108.

    Article  PubMed  CAS  Google Scholar 

  22. Turner, F. R., and Mahowald, A. 1977. Scanning electron microscopy of Drosophila melanogaster embryogenesis. II Gastrulation and segmentation. Dev. Biol. 57: 403–416.

    CAS  Google Scholar 

  23. Turner, F. R., and Mahowald, A. 1979. Scanning electron microscopy of Drosophila melanogaster embryogenesis. III Formation of head and caudal segments. Dev. Biol. 68: 96–109.

    CAS  Google Scholar 

  24. Vogel, O. 1977. Regionalization of segment-forming capacities during early embryogenesis in Drosophila melanogaster. Wilhelm. Roux Arch. 182: 9–32.

    Article  Google Scholar 

  25. Wakimoto, B., and Kaufman, T. 1981. Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Dev. Biol. 81: 51–64.

    Article  PubMed  CAS  Google Scholar 

  26. Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25: 1–47.

    Article  PubMed  CAS  Google Scholar 

  27. Wolpert, L., and Lewis, J. 1975. Towards a theory of development. Fedn. Proc. Fedn. Am. Socr. exp. Biol. 34: 14–20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin, Heidelberg, New York

About this paper

Cite this paper

Kaufman, T.C., Wakimoto, B.T. (1982). Genes That Control High Level Developmental Switches. In: Bonner, J.T. (eds) Evolution and Development. Dahlem Workshop Reports, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45532-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45532-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45534-6

  • Online ISBN: 978-3-642-45532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics