Skip to main content

Evolutionary Change in Genomic Regulatory Organization: Speculations on the Origins of Novel Biological Structure

  • Conference paper
Evolution and Development

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 22))

Abstract

In considering the mechanisms which could have led to the amazing variety of biological structures in the animal world, it has seemed reasonable to focus on the evolution of genomic regulatory pathways ((50), and Britten, this volume). Biological structure is the immediate result of developmental processes in which sets of diverse structural genes are expressed as ontogenically functional units. Such units must include genes that control the cell divisions in given tissue anlage or cell lineages, the nature of the products formed in the cells, their interactions with adjacent cells, and so forth. Relatives of most known structural genes seem to occur in a very wide phylogenetic range of creatures, while the specific patterns of development in which they are utilized are characteristic of each taxonomic group of organisms. If we understood the genomic organization underlying these specific ontogenic regulatory patterns, we might be in an excellent position to construct a useful theory of evolutionary invention at the DNA level. Unfortunately, such understanding still lies beyond current knowledge, though perhaps not very far beyond. In this essay I have chosen somewhat arbitrarily to consider two forms of hypothetical genomic regulatory organization. For neither of these is there yet any very strongly convincing evidence, particularly in regard to ontogenic regulatory coordination. Nonetheless, it is interesting to examine the implications for both kinds of proposed regulatory organization of various kinds of genomic alteration known to occur in evolution at a relatively high rate. This heuristic exercise shows that it is not difficult to imagine evolutionary mechanisms that could have had large scale functional effects on ontogenic patterns, and thus have led to the appearance of novel biological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. M.; Scheller, R. H.; Posakony, J. W.; McAllister, L. B.; Trabert, S. W.; Beall, C.; Britten, R. J.; and Davidson, E. H. 1981. Repetitive sequences of the sea urchin genome. Distribution of members of specific repetitive families. J. Mol. Biol. 145: 5–28.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D. M.; Chamberlin, M. E.; Britten, R. J.; Davidson, E. H.; Richter, J. D.; and Smith, L. D. 1981. Sequence organization of the poly(A) RNA synthesized and accumulated in lampbrush chromosome stage Xenopus laevis oocytes. J. Mol. Biol., submitted for publication.

    Google Scholar 

  3. Angerer, R. C., and Hough-Evans, B. R. 1977. Sequence organization of eukaryotic DNA. In Hormone Action. I. Steroid Hormone Receptors, eds. B. W. O’Malley and L. Birnbaumer, pp. 1–30. New York: Academic Press.

    Google Scholar 

  4. Benyajati, C., and Worcel, A. 1976. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell 9: 393–407.

    Article  PubMed  CAS  Google Scholar 

  5. Britten, R. J., and Davidson, E. H. 1969. Gene regulation for higher cells: a theory. Science 165: 349–358.

    Article  PubMed  CAS  Google Scholar 

  6. Britten, R. J., and Davidson, E. H. 1971. Repetitive and nonrepetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46: 111–138.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, D. D.; Wensink, P. C.; and Jordan, E. 1971. Purification and some characteristics of 5S DNA from Xenopus laevis. Proc. Natl. Acad. Sci. USA 68: 3175–3179.

    Article  PubMed  CAS  Google Scholar 

  8. Bush, G. L.; Case, S. M.; Wilson, A. C.; and Patton, J. L. 1977. Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA 74: 3942–3946.

    Article  PubMed  CAS  Google Scholar 

  9. Clarkson, S. G.; Kurev, V.; and Smith, H. O. 1978. Sequence organization of a cloned tDNAmet 1 fragment from Xenopus laevis. Cell 14: 713–724.

    Article  PubMed  CAS  Google Scholar 

  10. Cohn, R. H.; Lowry, J. C.; and Kedes, L. H. 1976. Histone genes of the sea urchin (S. purpuratus) cloned in E. coli: Order, polarity, and strandedness of the five histone-coding and spacer regions. Cell 9: 147–161.

    Article  PubMed  CAS  Google Scholar 

  11. Costantini, F. D.; Britten, R. J.; and Davidson, E. H. 1980. Message sequences and short repetitive sequences are interspersed in sea urchin egg poly(A)+ RNAs. Nature 287: 111–117.

    Article  PubMed  CAS  Google Scholar 

  12. Costantini, F. D.; Scheller, R. H.; Britten, R. J.; and Davidson, E. H. 1978. Repetitive sequence transcripts in the mature sea urchin oocyte. Cell 15: 173–187.

    Article  PubMed  CAS  Google Scholar 

  13. Davidson, E. H. 1976. Gene Activity in Early Development, 2nd ed., pp. 322–382. New York: Academic Press.

    Google Scholar 

  14. Davidson, E. H., and Britten, R. J. 1979. Regulation of gene expression: possible role of repetitive sequences. Science 204: 1052–1059.

    Article  PubMed  CAS  Google Scholar 

  15. Davidson, E. H.; Galau, G. A.; Angerer, R. C.; and Britten, R. J. 1975. Comparative aspects of DNA sequence organization in metazoa. Chromosoma 51: 253–259.

    Article  PubMed  CAS  Google Scholar 

  16. Davidson, E. H.; Hough, B. R.; Amenson, C. S.; and Britten, R. J. 1973. General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. Mol. Biol. 77: 1–23.

    Article  PubMed  CAS  Google Scholar 

  17. Davidson, E. H.; Hough, B. R.; Klein, W. H.; and Britten, R. J. 1975. Structural genes adjacent to interspersed repetitive DNA sequences. Cell 4: 217–238.

    Article  PubMed  CAS  Google Scholar 

  18. Errede, B.; Cardillo, T. S.; Sherman, F.; Dubois, E,; Deschamps, J.; and Wiame, J.-M. 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436.

    Article  PubMed  CAS  Google Scholar 

  19. Farabaugh, P. J., and Fink, G. R. 1980. Insertion of the eukaryotic transposable element Tyl creates a 5-base pair duplication. Nature 286: 352–356.

    Article  PubMed  CAS  Google Scholar 

  20. Fedoroff, N.; Wellauer, P. K.; and Wall, R. 1977. Intermolecular duplexes in heterogeneous nuclear RNA from HeLa cells. Cell 10: 597–610.

    Article  PubMed  CAS  Google Scholar 

  21. Fritsch, E. P.; Lawn, R. M.; and Maniatis, T. 1980. Molecular cloning and characterization of the human β-like globin gene cluster. Cell 19: 959–972.

    Article  PubMed  CAS  Google Scholar 

  22. Fyrberg, E. A.; Bond, B. J.; Hershey, N. D.; Mixter, K. S.; and Davidson, N. 1981. The actin genes of Drosophila: protein coding regions are highly conserved but intron positions are not. Cell, in press.

    Google Scholar 

  23. Garapin, A. C.; Le Pennec, J. P.; Roskam, W.; Perrin, F.; Cami, B.; Krust, A.; Breathnach, R.; Chambon, P.; and Kourilsky, P. 1978. Isolation by molecular cloning of a fragment of the split ovalbumin gene. Nature 273: 349–354.

    Article  PubMed  CAS  Google Scholar 

  24. Gausz, J.; Bencze, G.; Gyurkovics, H.; Ashburner, M.; Ish-Horowicz, D.; and Holden, J. J. 1979. Genetic characterization of the 87C region of the third chromosome of Drosophila melanogaster. Genetics 93: 917–934.

    PubMed  CAS  Google Scholar 

  25. Gehring, W. J., and Paro, R. 1980. Isolation of a hybrid plasmid with homologous sequences to a transposing element of Drosophila melanogaster. Cell 19: 897–904.

    Article  PubMed  CAS  Google Scholar 

  26. Hamer, D. H., and Leder, P. 1979. Splicing and the formation of stable RNA. Cell 18: 1299–1302.

    Article  PubMed  CAS  Google Scholar 

  27. Heilig, R.; Perrin, F.; Gannon, F.; Mandel, J. L.; and Chambon, P. 1980. The ovalbumin gene family: structure of the X gene and evolution of duplicated split genes. Cell 20: 625–637.

    Article  PubMed  CAS  Google Scholar 

  28. Hogness, D. S.; Bender, W. W.; Akam, M. E.; Saint, R. B.; and Spierer, P. 1981. Molecular organization and expression in the bithorax gene complex of Drosophila. J. Supramolec. Struct. & Cell. Biochem. Suppl 5: 385.

    Google Scholar 

  29. Johnson, T. K., and Judd, B. H. 1979. Analysis of the cut locus of Drosophila melanogaster. Genetics 92: 485–502.

    PubMed  CAS  Google Scholar 

  30. Jones, C. W., and Kafatos, F. C. 1980. Coordinately expressed members of two chorion multigene families are clustered, alternating and divergently orientated. Nature 284: 635–638.

    Article  PubMed  CAS  Google Scholar 

  31. Judd, B. N.; Chen, M. W.; and Kaufman, T. C. 1972. The anatomy and function of a segment of the X-chromosome of Drosophila melanogaster. Genetics 71: 139–156.

    PubMed  CAS  Google Scholar 

  32. Lerner, M. R.; Boyle, J. A.; Mount, S. M.; Wolin, S. L.; and Steitz, J. A. 1980. Are snRNPs involved in splicing? Nature 283: 220–224.

    Article  PubMed  CAS  Google Scholar 

  33. Lifton, R. P.; Goldberg, M. L.; Karp, R. W.; and Hogness, D. S. 1978. The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harb. Symp. Q. Biol. 42: 1047–1051.

    Article  CAS  Google Scholar 

  34. Meyerowitz, E. M., and Hogness, D. S. 1981. DNA sequence organization at the Drosophila polytene chromosome puff site 68C. Cell, in press.

    Google Scholar 

  35. Moore, G. P.; Costantini, F. D.; Posakony, J. W.; Davidson, E. H.; and Britten, R. J. 1980. Evolutionary conservation of repetitive sequence expression in sea urchin egg RNAs. Science 208: 1046–1048.

    Article  PubMed  CAS  Google Scholar 

  36. Moore, G. P.; Scheller, R. H.; Davidson, E. H.; and Britten, R. J. 1978. Evolutionary change in the repetition frequency of sea urchin DNA sequences. Cell 15: 649–660.

    Article  PubMed  CAS  Google Scholar 

  37. Posakony, J. W.; Scheller, R. H.; Anderson, D. M.; Britten, R. J.; and Davidson, E. H. 1981. Repetitive sequences in the sea urchin genome. Nucleotide sequences of cloned repeat elements. J. Mol. Biol. 149: 41–67.

    CAS  Google Scholar 

  38. Potter, S. S.; Brorein, Jr., W. J.; Dunsmuir, P.; and Rubin, G. M. 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Article  PubMed  CAS  Google Scholar 

  39. Prager, E. M., and Wilson, A. C. 1975. Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proc. Natl. Acad. Sci. USA 72: 200–204.

    Article  PubMed  CAS  Google Scholar 

  40. Proudfoot, N. J.; Shander, M. H. M.; Manley, J. L.; Gefter, M. L.; and Maniatis, T. 1980. Structure and in vitro transcription of human globin genes. Science 209: 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  41. Schaffner, W.; Gross, K.; Telford, J.; and Birnstiel, M. 1976. Molecular analysis of the histone gene cluster of Psammechinus miliaris: II. The arrangement of the five histone-coding and spacer sequences. Cell 8: 471–478.

    CAS  Google Scholar 

  42. Scheller, R. H.; Costantini, F. D.; Kozlowski, M. R.; Britten, R. J.; and Davidson, E. H. 1978. Representation of cloned interspersed repetitive sequences in sea urchin RNAs. Cell 15: 189–203.

    Article  PubMed  CAS  Google Scholar 

  43. Scheller, R. H.; McAllister, L. B.; Crain, Jr., W. R.; Durica, D. S.; Posakony, J. W.; Britten, R. J.; and Davidson, E. H. 1981. Organization and expression of multiple actin genes in the sea urchin. Molec. Cell. Biol. 1: 609–628.

    PubMed  CAS  Google Scholar 

  44. Schmid, C. W., and Deininger, P. L. 1975. Sequence organization of the human genome. Cell 6: 345–358.

    Article  PubMed  CAS  Google Scholar 

  45. Spradling, A. C.; Digan, M. E.; Mahowald, A. P.; Scott, M.; and Craig, E. A. 1980. Two clusters of genes for major chorion proteins of Drosophila melanogaster. Cell 19: 905–914.

    Article  PubMed  CAS  Google Scholar 

  46. Stalder, J.; Larsen, A.; Engel, J. D.; Dolan, M.; Groudine, M.; and Weintraub, H. 1980. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell 20: 451–460.

    Article  PubMed  CAS  Google Scholar 

  47. Voellmy, R.; Goldschmidt-Clermont, M.; Southgate, R.; Tissières, A.; Levis, R.; and Gehring, W. 1981. A DNA segment isolated from chromosomal site 67B in D. melanogaster contains four closely linked heat-shock genes. Cell 23: 261–270.

    Article  PubMed  CAS  Google Scholar 

  48. Wellauer, P. K.; Dawid, I. B.; Brown, D. D.; and Reeder, R. H. 1976. The molecular basis for heterogeneity in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 105: 561–586.

    Google Scholar 

  49. Williamson, V. M.; Young, E. T.; and Ciriacy, M. 1981. Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell 23: 605–614.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson, A. C.; Sarich, V. M.; and Maxson, L. R. 1974. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. USA 71: 3028–3030.

    Article  PubMed  CAS  Google Scholar 

  51. Wold, B. J.; Klein, W. H.; Hough-Evans, B. R.; Britten, R. J.; and Davidson, E. H. 1978. Sea urchin biastula mRNA sequences expressed in the nuclear RNAs of adult tissues. Cell 14: 941–950.

    Article  PubMed  CAS  Google Scholar 

  52. Woodruff, R. C., and Ashburner, M. 1979. The genetics of a small autosomal region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. II. Lethal mutations in the region. Genetics 92: 133–149.

    CAS  Google Scholar 

  53. Yen, P. H., and Davidson, N. 1980. The gross anatomy of a tRNA gene cluster at region 42A of the D. melanogaster chromosome. Cell 22: 137–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin, Heidelberg, New York

About this paper

Cite this paper

Davidson, E.H. (1982). Evolutionary Change in Genomic Regulatory Organization: Speculations on the Origins of Novel Biological Structure. In: Bonner, J.T. (eds) Evolution and Development. Dahlem Workshop Reports, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45532-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45532-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45534-6

  • Online ISBN: 978-3-642-45532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics