Skip to main content

Genomic Alterations in Evolution

  • Conference paper
Evolution and Development

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 22))

Abstract

To understand the evolution of species it appears that we will need to know the principal sources and kinds of genomic variation and the mechanisms or systems through which genomic variation affects genes, their expression and the phenotype. In addition we will need to know the nature of the populations that give rise to new species and the way in which the selective forces act through the behavior and death of individuals. What we cannot guess at this time is how much more we will also need to learn about the genome and as yet unexpected processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolton, E. T.; Britten, R. J.; Byers, T. J.; Cowie, D. B.; Hoyer, B.; Kato, Y.; McCarthy, B. J.; Miranda, M.; and Roberts, R. B. 1964. Biophysics Report. C. I. W. Year Book 63: 394.

    Google Scholar 

  2. Britten, R. J.; Cetta, A.; and Davidson, E. H. 1978. The single copy DNA sequence polymorphism of the sea urchin S. purpuratus DNA. Cell 15: 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  3. Britten, R. J.; Graham, D. E.; Eden, F. C.; Painchaud, D. M.; and Davidson, E. H. 1976. Evolutionary divergence and length of repetitive sequences in sea urchin DNA. J. Mol. Evol. 9: 1–23.

    Article  PubMed  CAS  Google Scholar 

  4. Britten, R. J., and Kohne, D. E. 1968. Repeated sequence in DNA. Science 161: 529–540.

    Article  PubMed  CAS  Google Scholar 

  5. Britten, R. J., and Smith, J. 1970. A bovine genome. Carnegie Inst. Wash. Year Book 68: 378–386.

    Google Scholar 

  6. Chamberlain, M. E.; Britten, R. J.; and Davidson, E. H. 1975. Sequence organization in Xenopus DNA studied by electron microscope. J. Mol. Biol. 96: 317–333.

    Article  Google Scholar 

  7. Cochet, M.; Gannon, F.; Heu, R.; Maroteaux, L.; Perrin, F.; and Chambon, P. 1979. Organization and sequence studies of the 17 piece chicken conalbumin gene. Nature 282: 567–571.

    Article  PubMed  CAS  Google Scholar 

  8. Crain, W. R.; Davidson, E. H.; and Britten, R. J. 1976. Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domestica (Housefly). Chromosoma 59: 1.

    Article  PubMed  CAS  Google Scholar 

  9. Crain, W. R.; Eden, F. C.; Pearson, W. R.; Davidson, E. H.; and Britten, R. J. 1976. Absence of short period inter-spersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma (Berl.) 56: 309–326.

    Article  PubMed  CAS  Google Scholar 

  10. Davidson, E. H.; Hough, B. R.; Amenson, C. S.; and Britten, R. J. 1973. General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. Mol. Biol. 77: 1–23.

    Article  PubMed  CAS  Google Scholar 

  11. Eden, F. C. 1980. A cloned chicken DNA fragment includes two repeated DNA sequences with remarkably different genomic organization. J. Biol. Chem. 255: 4854.

    PubMed  CAS  Google Scholar 

  12. Eden, F. C.; Burns, A. T. H.; and Goldberger, R. F. 1980. Complicated organization of a single repeated DNA sequence in the chicken genome revealed by cloning. J. Biol. Chem. 255: 4843.

    PubMed  CAS  Google Scholar 

  13. Eden, F. C.; Graham, D. E.; Davidson, E. H.; and Britten, R. J. 1977. Exploration of long and short repetitive sequence relationships in the sea urchin genome. Nucl. Acids Res. 4: 1553–1567.

    Article  PubMed  CAS  Google Scholar 

  14. Efstratiadis, A.; Crain, W. R.; Britten, R. J.; Davidson, E. H.; and Kafatos, F. C. 1976. DNA sequence organization in the lepidopteran Antherae pernyi. Proc. Natl. Acad. Sci. USA 73(7): 2289.

    Article  PubMed  CAS  Google Scholar 

  15. Efstratiadis, A.; Posakony, J. W.; Maniatis, T.; Lawn, R. M.; O’Connell, C.; Spritz, R. A.; De Riel, J. K.; Forget, B. G.; Weissman, S. M.; Slightom, J. L.; Blechl, A. E.; Smithies, O.; Barelle, F. E.; Shoulders, C. C.; and Proudfoot, N. J. 1980. The structure and evolution of the human β-Globin gene family. Cell 21: 653–668.

    Article  PubMed  CAS  Google Scholar 

  16. Emmons, S. W.; Klass, M. R.; and Hirsh, D. 1979. Analysis of the constancy of DNA sequences during development and evolution of the nematode caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 76(3); 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  17. Galau, G. A.; Chamberlin, M. E.; Hough, B. R.; Britten, R. J.; and Davidson, E. H. 1976. Evolution of repetitive and non-repetitive DNA. In Molecular Evolution. Sunderlane MA: Sinauer Assoc: 201.

    Google Scholar 

  18. Goldberg, R.B; Crain, W. R.; Ruderman, J. V.; Moore, G. P.; Barnett, T. R.; Higgins, R. C.; Gelfand, R. A.; Galau, G. A.; Britten, R. J.; and Davidson, E. H. 1975. DNA sequence organization in the genomes of five marine invertebrates. Chromosoma 51: 225–251.

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg, R. B.; Galau, G. A.; Britten, R. J.; and Davidson, E. H. 1973. Nonrepetitive DNA sequence representation in sea urchin embryo messenger RNA. Proc. Natl. Acad. Sci. USA 70: 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  20. Goodman, M. 1981. Decoding the pattern of protein evolution. In Progress in Biophysics and Molecular Biology: in press.

    Google Scholar 

  21. Graham, D. E.; Neufeld, B. R.; Davidson, E. H.; and Britten, R. J. 1974. Interspersion of repetitive and nonrepetitive DNA sequences in the sea urchin genome. Cell 1: 127–137.

    Article  CAS  Google Scholar 

  22. Gummerson, K. S., and Williamson R. 1974. Sequence divergence of mammalian globin messenger RNA. Nature 247: 265–267.

    Article  PubMed  CAS  Google Scholar 

  23. Hall, T. J.; Grula, J. W.; Davidson, E. H.; and Britten, R. J. 1980. Evolution of sea urchin non-repetitive DNA. J. Mol. Evol. 16: 95–110.

    Article  PubMed  CAS  Google Scholar 

  24. Ilyin, Y. V.; Tchurukov, N. A.; Ananiev, E. V.; Ryskov, A. P.; Yenikolpov, G. N.; Limborska, S. A.; Maleeva, N. E.; Gvozdev, V. A.; and Georgiev, G. P. 1978. Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences. Cold Spring Harbor Symp. Q. Biol. 42: 959–969.

    Article  Google Scholar 

  25. Klein, W. H.; Thomas, T. L.; Lai, C.; Scheller, R. H.; Britten, R. J.; and Davidson, E. H. 1978. Characteristics of individual repetitive sequence families in the sea urchin genome studied with cloned repeats. Cell 14: 889–900.

    Article  PubMed  CAS  Google Scholar 

  26. Kohne, D. E., and Byers, M. J. 1970. Divergence of expressed DNA sequences. Carnegie Inst. Wash. Year Book 68: 378.

    Google Scholar 

  27. Kohne, D. E.; Chiscon, J. A.; and Hoyer, B. H. 1971. Nucleotide sequence change on nonrepeated DNA during evolution. Carnegie Inst. Wash. Year Book 70: 488.

    Google Scholar 

  28. Manning, J. E.; Schmid, C. W.; and Davidson, N. 1975. Interspersion of repetitive and nonrepetitive DNA sequences in the Drosophila melanogaster genome. Cell 4: 141–155.

    Article  PubMed  CAS  Google Scholar 

  29. Marcu, K. B.; Banerji, J.; Penncavage, N. A.; Lang, R.; and Arnheim, N. 1980. 5’ flanking region of immunoglobulin heavy chain constant region genes displays length heterogeneity in germlines of inbred mouse strains. Cell 22: 187–196.

    Article  PubMed  CAS  Google Scholar 

  30. Moore, G. P.; Costantini, F. D.; Posakony, J. W.; Davidson, E. H.; and Britten, R. J. 1980. Evolutionary conservation of repetitive sequence expression in sea urchin egg RNA’s. Science 208: 1046–1048.

    Article  PubMed  CAS  Google Scholar 

  31. Moore, G. P.; Pearson, W. R.; Davidson, E. H.; and Britten, R. J. 1981. Long and short repeats of sea urchin DNA and their evolution. Chromosoma 84: 19–32.

    Article  PubMed  CAS  Google Scholar 

  32. Moore, G. P.; Scheller, R. H.; Davidson, E. H.; and Britten, R. J. 1978. Evolutionary change in the repetition frequency of sea urchin DNA sequences. Cell 15: 549–550.

    Article  Google Scholar 

  33. Posakony, J. W.; Anderson, D. A.; Scheller, R. H.; Britten, R. J.; and Davidson, E. H. 1981. Repetitive sequences of the sea urchin genome. J. Mol. Biol.: in press.

    Google Scholar 

  34. Potter, S.; Truett, M.; Phillips, M.; and Maher, A. 1980. Eucaryotic transposable genetic elements with inverted terminal repeats. Cell 20: 639–647.

    Article  PubMed  CAS  Google Scholar 

  35. Rosbash, M.; Campo, M. S.; and Gummerson, K. S. 1975. Conservation of cytoplasmic poly (A)-containing RNA in mouse and rat. Nature 258: 682–686.

    Article  PubMed  CAS  Google Scholar 

  36. Rubin, G. M.; Brorein, W. J.; Dunsmuir, P.; Flavell, A. J.; Levis, R.; Stroebel, E.; Toole, J. J.; and Young, E. 1981. “copia-like” transposable elements in the Drosophila genome. Cold Spring Harbor Symp. Q. Biol. 45: in press.

    Google Scholar 

  37. Scheller, R. H.; Anderson, D. M.; Posakony, J. W.; Mc Allister, L. B.; Britten, R. J.; and Davidson, E. H. 1981. Repetitive sequences of the sea urchin genome II. Subfamily structure and evolutionary conservation. J. Mol. Biol.: in press.

    Google Scholar 

  38. Schmid, C. W. and Deininger, P. L. 1975. Sequence organization of the human genome. Cell 6: 345–358.

    Article  PubMed  CAS  Google Scholar 

  39. Slightom, J. L.; Blechl, A. E.; and Smithies, O. 1980. Human fetal Gγ — and Aγ — globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638.

    Article  PubMed  CAS  Google Scholar 

  40. Tchurikov, N. A.; Ilyin, Y. V.; Ananiev, E. V.; and Georgiev, G. P. 1978. The properties of gene Dm225, a representative of dispersed repetitive genes in Drosophila melanogaster. Nucl. Acids Res. 5: 2169.

    Article  PubMed  CAS  Google Scholar 

  41. Wensink, P. C.; Shiro, T.; and Pachl, C. 1979. The clustered and scrambled arrangement of moderately repetitive elements in Drosophila DNA. Cell 18: 1231–1246.

    Article  PubMed  CAS  Google Scholar 

  42. Williamson, V. M., and Young, E. T. 1981. Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell 23: 605–614.

    Article  PubMed  CAS  Google Scholar 

  43. Young, M. 1979. Middle repetitive DNA: A fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 76: 6274–6278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin, Heidelberg, New York

About this paper

Cite this paper

Britten, R.J. (1982). Genomic Alterations in Evolution. In: Bonner, J.T. (eds) Evolution and Development. Dahlem Workshop Reports, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45532-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45532-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45534-6

  • Online ISBN: 978-3-642-45532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics