Skip to main content

Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme

  • Conference paper
Cryptography and Coding (IMACC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8308))

Included in the following conference series:

Abstract

In 1996, Hoffstein, Pipher and Silverman introduced an efficient lattice based encryption scheme dubbed NTRUEncrypt. Unfortunately, this scheme lacks a proof of security. However, in 2011, Stehlé and Steinfeld showed how to modify NTRUEncrypt to reduce security to standard problems in ideal lattices. In 2012, López-Alt, Tromer and Vaikuntanathan proposed a fully homomorphic scheme based on this modified system. However, to allow homomorphic operations and prove security, a non-standard assumption is required. In this paper, we show how to remove this non-standard assumption via techniques introduced by Brakerski and construct a new fully homomorphic encryption scheme from the Stehlé and Steinfeld version based on standard lattice assumptions and a circular security assumption. The scheme is scale-invariant and therefore avoids modulus switching and the size of ciphertexts is one ring element. Moreover, we present a practical variant of our scheme, which is secure under stronger assumptions, along with parameter recommendations and promising implementation results. Finally, we present an approach for encrypting larger input sizes by extending ciphertexts to several ring elements via the CRT on the message space.

Most of this work was done while the third author was an intern in the Cryptography Research group at Microsoft Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme (full version). Cryptology ePrint Archive, Report 2013/075 (2013), http://eprint.iacr.org/

  3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

    Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)

    Google Scholar 

  6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

  10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  11. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Cachin, C., Ristenpart, T. (eds.) CCSW, pp. 113–124. ACM (2011)

    Google Scholar 

  15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)

    Google Scholar 

  17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: SIAM J. on Comp., pp. 372–381. IEEE Computer Society (2004)

    Google Scholar 

  19. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, vol. 4, pp. 169–180. Academic Press, New-York (1978)

    Google Scholar 

  22. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report 2011/133 (2011), http://eprint.iacr.org/

  24. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bos, J.W., Lauter, K., Loftus, J., Naehrig, M. (2013). Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45239-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45238-3

  • Online ISBN: 978-3-642-45239-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics