Skip to main content

Physical and Mechanical Properties of Rocks

  • Chapter
  • First Online:
Stone in Architecture

Abstract

Since early antiquity, dimension stones have been used as building materials due to their natural beauty and availability, and the diversity of their applications has been increasing ever since. As any other building material, dimension stones today have to fulfill the physical and technical requirements demanded by architects. This chapter focuses on the physical and mechanical properties of dimension stones, while emphasizing that stones are an old, yet still modern, building material. Among the parameters discussed here are water absorption, thermal conductivity and expansion, hygric and hydric properties, strength, abrasion, the more modern aspect of breaking load at the dowel hole, and ultrasonic wave velocities. Extensive data sets and a variety of case studies reveal relationships between the physical properties and the internal fabric elements of the dimension stones, such as sedimentary layering, metamorphic foliation, pores, and microcracks. In addition, these fabric elements are often responsible for the weathering behavior of the dimension stones, which not only affects the heritage but also the safety of modern buildings. This is illustrated through laboratory experiments and case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aires-Barros L, Graca RC, Velez A (1975) Dry and wet laboratory tests and the thermal fatigue of rocks. Eng Geol 9:249–265

    Google Scholar 

  • Akin M (2010) A quantitative weathering classification system for yellow travertines. Environ Earth Sci. doi:10.1007/s12665-009-0319-7

    Google Scholar 

  • Archie GE (1952) Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bull 36:278–298

    Google Scholar 

  • Arikan F, Ulusay R, Aydin N (2007) Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ 66(4):415–430

    Google Scholar 

  • ASTM C 880-89 (1989) Flexural strength of dimension stones. Beuth, Berlin

    Google Scholar 

  • Babuska V, Cara M (1991) Seismic anisotropy in the earth. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Battaglia S, Franzini M, Mango F (1993) High sensitivity apparatus for measuring linear thermal expansion: preliminary result on the respond of marbles. Nuovo Cimento C 16:453–461

    Google Scholar 

  • Bauer SJ, Johnson B (1979) Effects of slow uniform heating on the physical properties of Westerly and Charocoal granites. Proceedings of 20th symposium on rock mechanics, Austin, pp 7–18

    Google Scholar 

  • Bieniawski ZT (1967) Mechanism of the fracture of rocks. Pergamon Press, New York

    Google Scholar 

  • Birch F (1960) The velocity and compressional waves in rocks to 10 kilobars. Part 1. J Geophys Res 65:1083–1102

    Google Scholar 

  • Birch F (1961) The velocity and compressional waves in rocks to 10 kilobars. Part 2. J Geophys Res 66:2199–2224

    Google Scholar 

  • Birch F, Clark H (1940) The thermal conductivities of rocks and its dependence upon temperature and composition. Part I. Am J Sci 238:529–558

    Google Scholar 

  • Bland W, Rolls D (1998) Weathering. Arnold, London

    Google Scholar 

  • Blasi P, Frisa Morandini A, Mancini R, et al (2000) Investigación experimental sobre los ensayos de flexión en los mármoles: confianza de los resultados y efecto escala. Roc Maquina–Dimension Stone Industry 36:20–25

    Google Scholar 

  • Blöchl B, Kirchner D, Stadlbauer E (1998) Die hygrische Dehnung von Baumberger Kalksandstein–tonmineralogische und gesteinsphysikalische Aspekte. Arbeitshefte zur Denkmalpflege in Niedersachsen 15:46–53

    Google Scholar 

  • Brakel J, Modry S, Svata M (1981) Mercury porosimetry: state of the art. Powder Tech 29:1–12

    Google Scholar 

  • Brosch FJ, Schachner K, Bluemel M et al (2000) Preliminary investigation results on fabrics and related mechanical properties of an anisotropic gneiss. J Struct Geol 22:1773–1787

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Google Scholar 

  • Bucher WH (1956) Role of gravity in orogenesis. Bull Geol Soc Am 67:1295–1318

    Google Scholar 

  • Buntebarth G (1982) Density and seismic velocity in relation to mineralogical constitution based on an ionic model for minerals. Earth Planet Sci Lett 57:358–366

    Google Scholar 

  • Buntebarth G (1991) Thermal properties of KTB-Oberpfalz VB core samples at elevated temperature and pressure. Sci Drill 2:73–80

    Google Scholar 

  • Buntebarth G (1992) Variation of thermal conductivity with structure of rocks. In: Buntebarth G (ed) Thermal properties of crustal materials. Sitzungsberichte der 22. Sitzung FKPE-Arbeitsgruppe and 92th Seminar of Dr WH Heraeus and E Heraeus-Stiftung

    Google Scholar 

  • Buntebarth G, Rueff P (1987) Laboratory thermal conductivity applied to crustal conditions. Rev Brasil Geofisica 5:103–109

    Google Scholar 

  • Cammerer JS (1954) Das Verhalten der wichtigsten Baustoffe gegenüber flüssigen und dampfförmigen Wasser. Tonind Ztg 78:199–204

    Google Scholar 

  • Ceryan S, Tudes S, Ceryan N (2008) Influence of weathering on the engineering properties of Harsit granitic rocks (NE Turkey). Bull Eng Geo Environ 67:97–104

    Google Scholar 

  • Chitsazian A (1985) Beziehung zwischen Mineralbestand, Gefüge und technologischen Eigenschaften der Niedersächsischen ‘Wealden’-Sandsteine (Unterkreide). Mitt Geol Institut Univ Hannover, Hannover

    Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Petrol Geol Bull 54:207–250

    Google Scholar 

  • Christensen NI (1968) Chemical changes associated with upper mantle structure. Tectonophysics 6:331–342

    Google Scholar 

  • Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradient, and crustal low-velocity zones. J Geophys Res 84:6849–6857

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations—a handbook of physical constants. AGU Ref Shelf. Vol 3. American Geophysical Union, Washington

    Google Scholar 

  • Clemens K, Grimm W-D, Poschlod K (1990) Zur Kennzeichnung des Korngefüges und des Porenraumes der Naturwerksteine. In: Grimm W-D (ed) Bildatlas wichtiger Denkmalgesteine der Bundesrepublik Deutschland. Bayerisches Landesamt für Denkmalpflege, Munich

    Google Scholar 

  • Crosson RS, Lin JW (1971) Voigt and Reuss predictions of anisotropic elasticity of olivine. J Geophys Res 76:570–578

    Google Scholar 

  • David Ch (2006) Buntsandsteine-Bausandsteine, Marburger Bausandsteine unter der Lupe. Marburger Geowissenschaften 3:1–129

    Google Scholar 

  • De Quervain F (1967) Technische Gesteinskunde. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften. Mineralogisch-geotechnische Reihe, Bd 1. Birkhäuser, Basel

    Google Scholar 

  • DIN 52 105 (1988) Prüfung von Naturstein. Druckversuch.—2 S. Beuth, Berlin

    Google Scholar 

  • DIN 66131 (1993) Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption nach Brunauer, Emmett und Teller (BET). Beuth, Berlin

    Google Scholar 

  • DIN EN 1097–6 (2005) Tests for mechanical and physical properties of aggregates—part 6: determination of particle density and water absorption. German version EN 1097–6 European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • DIN EN 12372 (1999) Natural stone test methods—determination of flexural strength under concentrated load. German version EN 12372 European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • DIN EN 13161 (2008) Natural stone test methods—determination of flexural strength under constant moment. German version EN 13161, European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • DIN EN 13364 (2002) Natural stone test methods—determination of the breaking load at dowel hole. German version EN 13364 European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • DIN EN 1926 (1999) Natural stone test methods—determination of uniaxial compressive strength. German version EN 1926 European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • DIN EN 12572 (2009) Hygrothermal performance of building materials and products—determination of water vapour transmission properties. German version EN 12572, European Committee for Standardization. Beuth, Berlin

    Google Scholar 

  • Doveton JH (1987) Log analysis of petrofacies and lithofacies. GFZ Logging Course, Geoforschungszentrum Potsdam, Potsdam

    Google Scholar 

  • Dubinin MM (1979) Micropore structures of charcoal adsorbents. 1. A general characterization of micro- and supermicropores in the fissure model. Proc Acad Sci USSR 8:1691–1696

    Google Scholar 

  • Dürrast H, Jahns E, Tischer A et al (2001) Vorzugsorientierungen der Mikrorissbildung im triaxialen Verformungsexperiment am Beispiel des Piesberger Sandsteins. Z dtsch geol Ges 152:611–620

    Google Scholar 

  • Dürrast H, Rasolofosaon PNJ, Siegesmund S (2002) P-wave velocity and permeability distribution of sandstones from a fractured tight gas reservoir. Geophysics 67:241–253

    Google Scholar 

  • Dürrast H, Siegesmund S (1999) Correlation between rock physics and physical properties of carbonate reservoir rocks. Int J Earth Sci 88:392–408

    Google Scholar 

  • Dürrast H, Siegesmund S, Prasad M (1999) Schadensanalyse von Natursteinen mittels Ultraschalldiagnostik: Möglichkeiten und Grenzen. Z dtsch geol. Ges 150(2):359–374

    Google Scholar 

  • Fitzner B (1970) Die Prüfung der Frostbeständigkeit von Naturbausteinen. Geol Mitt 10:205–296

    Google Scholar 

  • Fitzner B (1988) Untersuchung der Zusammenhänge zwischen dem Hohlraumgefüge von Natursteinen und physikalischen Verwitterungsvorgängen. Mitt Ing Geol Hydrogeol 29:1–217

    Google Scholar 

  • Fitzner B, Basten D (1994) Gesteinsporosität—Klassifizierung, meßtechnische Erfassung und Bewertung ihrer Verwitterungsrelevanz—Jahresberichte aus dem Forschungsprogramm “Steinzerfall-Steinkonservierung” 1992, Förderprojekt des Bundesministers für Forschung und Technologie. Verlag Ernst & Sohn, Berlin

    Google Scholar 

  • Fitzner B, Heinrichs K (1992) Verwitterungszustand und Materialeigenschaften der Kalksteine des Naumburger Doms—Jahresberichte aus dem Forschungsprogramm “Steinzerfall-Steinkonservierung” 1990, Förderprojekt des Bundesministers für Forschung und Technologie. Verlag Ernst & Sohn, Berlin

    Google Scholar 

  • Fitzner B, Kownatzki R (1991) Porositätseigenschaften und Verwitterungsverhalten von sedimentären Naturwerksteinen. Bauphysik 13(4):111–119

    Google Scholar 

  • Fitzner B, Snethlage R (1983) Modellvorstellungen zum Kristallisations- und Hydratationsdruck von Salzen im Porenraum von Sandsteinen. Sitzungsbericht des Arbeitskreises ‘Naturwissenschaftliche Forschung an Kunstgütern aus Stein’, Erlangen

    Google Scholar 

  • Franklin JA, Dusseault MB (1989) Rock engineering. McGraw Hill Publ, New York

    Google Scholar 

  • Franzen C, Mirwald PW (2004) Moisture content of natural stones: static and dynamic equilibrium with atmospheric humidity. Environ Geol 46:391–401

    Google Scholar 

  • Fredrich JT, Wong TF (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91(B12):12743–12764

    Google Scholar 

  • Garrecht H (1992) Porenstrukturmodelle für den Feuchtehaushalt von Baustoffen mit und ohne Salzbefrachtung und rechnerische Anwendung auf Mauerwerk. Dissertation, Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, Karlsruhe

    Google Scholar 

  • Gebrande H (1982) Elasticity and inelasticity. In: Augenheister G (ed) Landolt-Börnstein, Band 1, Physikalische Eigenschaften der Gesteine. Springer, Berlin

    Google Scholar 

  • Glover PW, Baud P, Darot M et al (1995) Alpha/beta phase transition in quartz monitored using acoustic emissions. Geophys J Int 120:775–782

    Google Scholar 

  • Goudie AS (1974) Further experimental investigations of rock weathering by salt and other mechanical processes. Z Geomorph 21:1–12

    Google Scholar 

  • Greger O (1930) Druckfestigkeit und Bergfrische beim Granit. Straßenbau 21:99–102

    Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic, London

    Google Scholar 

  • Grelk B, Goltermann P, Schouenborg B et al (2004) The laboratory testing of potential bowing and expansion of marble. In: Prikryl R (ed) Dimension stone 2004. Taylor & Francis Group, London

    Google Scholar 

  • Griesser UJ, Dillenz J (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerüt mit hohem Probendurchsatz. Conf Proc 9. Feuchtetag, Weimar

    Google Scholar 

  • Griggs DT (1936) The factor of fatigue in rocks exfoliation. J Geol 44:781–796

    Google Scholar 

  • Grimm W-D (1990) Bildatlas wichtiger Denkmalgesteine in Deutschland. Bayerisches Landesamt für Denkmalpflege, München

    Google Scholar 

  • Grimm W-D (1999) Beobachtungen und Überlegungen zur Verformung von Marmorobjekten durch Gefügeauflockerung. Z dtsch geol Ges 150:195–236

    Google Scholar 

  • Grüneisen E (1926) Zustand des festen Körpers. In: Geiger H, Scheel K (eds) Handbuch der Physik. Vol. 10, Thermische Eigenschaften der Stoffe. Springer, Berlin

    Google Scholar 

  • Hajpal LM, Török A (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322

    Google Scholar 

  • Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51:2093–2107

    Google Scholar 

  • Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Quart J Eng Geol 25:115–130

    Google Scholar 

  • Heinrichs K (2005) Diagnose der verwitterungsschäden an den Felsmonumenten der antiken Stadt Petra (Jordanien). Aachener Geowiss Beiträge 41:1–144

    Google Scholar 

  • Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Verlag W Ernst & Sohn, Berlin

    Google Scholar 

  • Hockmann A, Kessler DW (1950) Thermal and moisture expansion studies of some domestic granites. US Bur Stand J Res 44:395–410

    Google Scholar 

  • Hoffmann A (2008) Naturwerksteine Thailands: Lagerstättenerkundung und Bewertung. http://webdoc.sub.gwdg.de/diss/2007/hoffmann/hoffmann.pdf. Accessed 20 July 2010

  • Hoffmann A, Siegesmund S (2007) Investigation of dimension stones in Thailand: an approach to a methodology for the assessment of stone deposits. Z dtsch Ges Geowiss 158/3:375–416

    Google Scholar 

  • Holm A (2001) Ermittlung der Genauigkeit von instationären hygrothermischen Bauteilberechnungen mittels eines stochastischen Konzepts. Diss Uni Stuttgart

    Google Scholar 

  • Horai K, Baldridge WS (1972) Thermal conductivity of nineteen igneous rocks, I: application of the needle probe method to the measurement of the thermal conductivity of rock. Phys Earth Planet Inter 5:151–156

    Google Scholar 

  • Horai K, Simmons G (1969) Thermal conductivity of rock forming minerals. Earth Planet Sci Lett 6:259–268

    Google Scholar 

  • Horai K, Susaki J (1989) The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar. Phys Earth Planet Int 55:292–305

    Google Scholar 

  • Hörenbaum W (2005). Verwitterungsmechanismen und Dauerhaftigkeit von Sandsteinsichtmauerwerk. Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, TH Karlsruhe, Karlsruhe

    Google Scholar 

  • Howarth DF, Rowlands JC (1987) Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech Rock Eng 20:57–85

    Google Scholar 

  • I-Stone (2008) Characterization of natural stones and finished products. http://www.istone.ntua.gr/Training_courses/wp1/absorption.html. Accessed 20 July 2010

  • Ide JM (1937) The velocity of sound in rocks and glasses as a function of temperature. J Geol 45:689–716

    Google Scholar 

  • Illiev IG (1967) An attempt to estimate the degree of weathering of intrusive rocks from their physica-mechanical properties. Proceedings of 1st international congress of the International Society of Rock Mechanics, Lisbon. Vol 1, pp 109–114

    Google Scholar 

  • Jiménez González I, Scherer GW (2004) Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ Geol 46:364–377

    Google Scholar 

  • Katzschman L, Aselmeyer G, Auras M (2006) Natursteinkataster Thüringen. IFS-Bericht 23:1–196

    Google Scholar 

  • Kern H, Siegesmund S (1989) A test of the relationship between seismic velocity and heat production for crustal rocks. Earth Planet Sci Lett 92:89–94

    Google Scholar 

  • Kettenacker L (1930) Über die Feuchtigkeit in Mauern. Ges Ing 53:721–728

    Google Scholar 

  • Kießl K (1983) Kapillarer und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen. Diss, Univ Essen

    Google Scholar 

  • Kim D-C, Manghnani MH, Schlanger SO (1985) The role of diagenesis in the development of physical properties of deep-sea carbonate sediments. Marine Geol 69:69–91

    Google Scholar 

  • Klima K, Kluhanek O (1968) Quantitative correlation between preferred orientation of grains and elastic anisotropy of marble. IEEE Geisci Electron GE- 6:139

    Google Scholar 

  • Klopfer H (1974) Wassertransport durch Diffusion in Feststoffen. Bauverlag, Wiesbaden

    Google Scholar 

  • Klopfer H (1985) Feuchte. In: Lutz P, Jenisch R, Klopfer H et al (eds) Lehrbuch der Bauphysik. Teubner, Stuttgart

    Google Scholar 

  • Koch A, Siegesmund S (2001) Gesteinstechnische Eigenschaften ausgewählter Bausandsteine. Z dtsch geol Ges 152:681–700

    Google Scholar 

  • Koch A, Siegesmund S (2004) The combined effect of moisture and temperature on the anomalous behavior of marbles. Environ Geol 46(3-4):350–363

    Google Scholar 

  • Koch A, Siegesmund S (2005) Gesteinstechnische Eigenschaften von Sandsteinen. Naturstein 5:84–91

    Google Scholar 

  • Koch R, Sobott R (2005) Porosität in Karbonatgesteinen—Genese, Morphologie und Einfluss auf Verwitterung und Konservierungsmaßnahmen. Z dtsch geol Ges 156:33–50

    Google Scholar 

  • Kocher M (2005) Quelldruckmessungen und thermische Druckmessungen an ausgewählten Sandsteinen. PhD thesis, LMU München

    Google Scholar 

  • Kodikara J, Barbour SL, Fredlund DG (1999) Changes in clay structure and behavior due to wetting and drying. In: 8th Australian-New Zealand conference on geomechanics, Australian Geomechanics, Hobart

    Google Scholar 

  • Köhler W (1991) Untersuchungen zu Verwitterungsvorgängen an Carrara-Marmor in Potsdam- Sanssouci. Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland. Steinschäden-Steinkonservierung 2:50–53

    Google Scholar 

  • Köhler W (2009) Riss- und Verwitterungsanalytik mit zerstörungsfreien Verfahren. In: Venzmer H (ed) EU-Sanierungskalender 2009. Beuth, Berlin

    Google Scholar 

  • Krantz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1-3):449–480

    Google Scholar 

  • Kraus K (1985) Experimente zur immissionsbedingten Verwitterung der Naturbausteine des Kölner Doms im Vergleich zu deren Verhalten am Bauwerk. University of Cologne

    Google Scholar 

  • Krus M (1995) Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Messtechniken. Diss Univ Stuttgart

    Google Scholar 

  • Künzel H (1994) Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten. Diss Univ Stuttgart

    Google Scholar 

  • Künzel HM, Krus M (1995) Beurteilung des Feuchteverhaltens von Natursteinfassaden durch Kombination von rechnerischen und esperimentellen Untersuchungsmethoden. Intern Z Bauinstandsetzen 1:5–20

    Google Scholar 

  • Kürzl H (1988) Exploratory data analysis: recent advances for the interpretation of geochemical data. J Geochem Explor 30:309–322

    Google Scholar 

  • Landolt-Börnstein (1982) New series, group V(1a): geophysics. Springer, Berlin

    Google Scholar 

  • Langheinrich G (1983). Wärmeleitfähigkeiten anisotroper Gesteine. Geol Rdsch 72:541–588

    Google Scholar 

  • Lentschig E (1971) Qualitätspässe für Werksteine. Techn Inf Zuschlagstoffe und Natursteine 3:13–19 and 4:27–32

    Google Scholar 

  • LGA (1988) Richtlinie zur Bestimmung der Ausbruchslast am Ankerdornloch in Fassasenplatten aus Naturwerkstein. 1987 ed. with corr. Landesgewerbeanstalt Bavaria, Zweigstelle Würzburg, Würzburg

    Google Scholar 

  • Lu C, Jackson I (1998) Seismic-frequency laboratory measurements of shear mode viscoelasticity in crustal rocks: II thermally stressed quartzite and granite. Pure Appl Geophys 153(2–4):441–473

    Google Scholar 

  • Lucia FJ (1983) Petrophysical parameters estimated from visual description of carbonate rocks: a field classification of carbonate pore space. J Petrol Tech 35:626–637

    Google Scholar 

  • Lucia FJ (1995) Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization. Am Assoc Petrol Geol Bull 79:1275–1300

    Google Scholar 

  • Lucia FJ (1999) Carbonate reservoir characterization. Springer, Berlin

    Google Scholar 

  • Lukas R (1990) Die Naturwerksteine Baden-Württembergs und ihre Wetterbeständigkeit sowie Verwitterungsprofile ausgewählter Carbonatgesteine. Diss Univ Munich

    Google Scholar 

  • Madsen FT (1976) Quelldruckmessungen an Tongesteinen und Berechnung des Quelldrucks nach der DLVO-Theorie. Mitt Institutes für Grundbau und Bodenmechanik, ETH Zürich 108:1–65

    Google Scholar 

  • Madsen FT, Nüesch R (1990) Langzeitquellverhalten von Tongesteinen und tonigen Sulfatgesteinen. Mitt Institutes für Grundbau und Bodenmechanik, ETH Zürich 140:1–51

    Google Scholar 

  • Meng B (1993) Charakterisierung der Porenstruktur im Hinblick auf die Interpretation von Feuchtetransportvorgängen. Aachener Beitr Bauforsch 3:1–71

    Google Scholar 

  • Messmer JH (1965) The thermal conductivity of porous media. IV Sandstones. The effect of temperature and saturation. Proceedings of 5th conference on thermal conductivity. Vol 1, pp 1–29

    Google Scholar 

  • Metz F (1992) Zur Charakterisierung von Porenraum und ausgewählten Gebrauchseigenschaften verschiedener Natursteine. Hochschul Sammlung Naturwiss Mineral 2:1–164

    Google Scholar 

  • Mirwald P (1997) Physikalische Eigenschaften der Gesteine. In: Berufsbildungswerk des Steinmetz- und Bildhauerhandwerks e.V. (ed) Ebner, Ulm

    Google Scholar 

  • Monicard RP (1980) Properties of Reservoir Rocks: Core Analysis. Edition Technip, Paris

    Google Scholar 

  • Morales M (2011) Dimensional stones of Uruguay. PhD thesis, University of Goettingen

    Google Scholar 

  • Morales M, Oyhantcabal P, Stein K-J, Siegesmund S (2010) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci. doi:10.1007/s12665-010-0827-5

    Google Scholar 

  • Morales Demarco M, Jahns E, Ruedrich J et al (2007) The impact on partial water saturation in rock strength: an experimental study on sandstone. Z dtsch Ges Geowiss 158:869–882

    Google Scholar 

  • Mosch S (2009) Optimierung der Exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http://webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf. Accessed 20 July 2010

  • Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z dtsch Ges Geowiss 158(4):821–868

    Google Scholar 

  • Mügge O (1898) Über Translationen und verwandte Erscheinungen in Kristallen. Neues Jahrbuch Miner Geol Palaeont 1:71–158

    Google Scholar 

  • Müller F (2001) Gesteinskunde. Ebner, Ulm

    Google Scholar 

  • Nafe JE, Drake CL (1963) Physical properties of marine sediments. In: Hill MN (ed) The earth beneath the sea: history. Wiley-Interscience, New York

    Google Scholar 

  • Niesel K, Schimmelwitz P (1982) Zur quantitativen Kennzeichnung des Verwitterunsgverhaltens von Naturwerksteinen anhand ihrer gefügemerkmale. Bundesamt für Materialprüfung Forsch- Ber 86:1–100

    Google Scholar 

  • Nur A, Simmons G (1969) The effect of saturation on velocity in low porosity rocks. Earth Planet Sci Lett 7:183–193

    Google Scholar 

  • O’Connell RJ, Budiansky B (1974) Seismic velocities in dry and saturated cracked solids. J Geophys Res 79(35):5412–5426

    Google Scholar 

  • Ollier C (1984) Weathering. Longman, New York

    Google Scholar 

  • Ondrasina J, Kirchner D, Siegesmund S (2002) Frost/Thaw cycles and their influence on marble deterioration: a long-term experiment. Geol Soc Spec Publ 205:8–17

    Google Scholar 

  • Peck L, Barton CC, Gordon RB (1985) Microstructure and resistance of a rock to tensile fracture. J Geophys Res B 90:11533–11546

    Google Scholar 

  • Peel RF (1974) Insolation weathering: some measurements of diurnal temperature changes in exposed rocks in the Tibesti Region, Central Sahara. Z Geomorph 21:19–28

    Google Scholar 

  • Peschel A (1974) Zur Ermittlung und Bewertung von Festigkeitseigenschaften bei Natursteinen. Z Angew Geol 20:118–128

    Google Scholar 

  • Peschel A (1977) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Peschel A (1983) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Picot P, Johan Z (1977) Atlas of ore minerals. Bureau de Recherches Geologiques et Minieres, Orleans

    Google Scholar 

  • Popp T (1994) Der Einfluß von Gesteinsmatrix, Mikrorißgefügen und intergranularen Fluiden auf die elastischen Wellengeschwindigkeiten und die elektrische Leitfähigkeit krustenrelevanter Gesteine unter PT-Bedingungen. Diss Univ Kiel

    Google Scholar 

  • Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine. Münchener Geowiss Abh B 7, Verlag Dr. Friedrich Pfeil, Munich

    Google Scholar 

  • Pribnow D, Williams CF, Burkhardt H (1993) Well log-derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys Res Lett 20(12):1155–1158

    Google Scholar 

  • Primavori P (1999) Planet stone. Giorgio Zusi Editore S.A.S, Verona

    Google Scholar 

  • Pros Z, Babuška V (1967) A method for investigating the elastic anisotropy on spherical rock samples. Z Geophys 33:289–291

    Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 20 July 2010

  • Rasolofosaon P, Rabbel W, Siegesmund S et al (2000) Characterization of crack distribution: fabric analysis versus ultrasonic inversion. Geophys J Int 141:413–424

    Google Scholar 

  • Rentsch W, Krompholz G (1961) Zur Bestimmung elastischer Konstanten durch Schallgeschwindigkeitsmessungen. Fachzeitschrift der Bergakademie Freiberg. http://www.geotron.de/tl_files/geotron/media/Messverfahren/dynEModul/Quelle2_Bestimmung_elastischer_Konstanten_1961.pdf. Accessed 20 July 2010

  • Richter D, Simmons G (1974) Thermal expansion behavior of igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 11:403–411

    Google Scholar 

  • Robertson EC, Peck DL (1974) Thermal conductivity of vesicular basalt from Hawaii. J Geophys Res 79:4875–4888

    Google Scholar 

  • Rohowski H (2001) Druckfestigkeit und Ausbruchlast neu geregelt. Naturstein 3:88–92

    Google Scholar 

  • Rösler HJ (1991) Lehrbuch der Mineralogie. Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Roth ES (1955) Temperature and water content as factors in desert weathering. J Geol 73:454–468

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  • Ruedrich J (2003) Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore. Diss Univ Göttingen

    Google Scholar 

  • Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2010a) Building sandstone integrity affected by the process of hygric expansion. Environ Earth Sci. doi:10.1007/s12665-010-0767-0

    Google Scholar 

  • Ruedrich J, Kirchner D, Siegesmund S (2010b) Physical weathering of building stones induced by freeze thaw action: a laboratory long-term study. Environ Earth Sci. doi:10.1007/s12665-010-0826-6

    Google Scholar 

  • Ruedrich J, Rothert E, Fitzner B et al (2005a) Schadensanalyse an Gebäuden aus Kalksteinen auf Malta. In: Siegesmund S, Snethlage R, Auras M (eds) Stein-Zerfall und Konservierung. Edition Leipzig, Leipzig

    Google Scholar 

  • Ruedrich J, Seidel M, Kirchner D et al (2005b) Salzverwitterung, hygrische und thermische Dehnung als auslösende Schadensquantitäten. Z dtsch geol Ges 156(1):59–74

    Google Scholar 

  • Ruedrich J, Seidel M, Rothert E et al (2007) Length change behaviour of sandstones induced by salt crystallisation. In: Prikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geol Soc London Spec Pub, London

    Google Scholar 

  • Ruedrich J, Siegesmund S (2006) Fabric dependence of length change behaviour induced by ice crystallization in the pore space of natural building stones. In: Fort A, Alvarez de Buergo M, Gomez-Heras M et al (eds) Heritage, weathering and conservation. Taylor & Francis Group, London

    Google Scholar 

  • Ruedrich J, Siegesmund S (2007) Salt-induced weathering: an experimental approach. Environ Geol 52:225–249

    Google Scholar 

  • Ruedrich J, Weiss T, Siegesmund S (2001) Deterioration characteristics of marbles from the Marmorpalais Potsdam (Germany): a compilation. Z dtsch geol Ges 152:637–664

    Google Scholar 

  • Rybach J, Buntebarth G (1982) Relationship between the petrophysical properties density, seismic velocity, heat production and mineralogical constitution. Earth Planet Sci Lett 57:367–376

    Google Scholar 

  • Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Koukis GC (eds) Engineering geology of ancient works, monuments and historical sites. Balkema, Rotterdam

    Google Scholar 

  • Schild M, Siegesmund S, Vollbrecht A et al (2001) Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory measurements. Geophys J Int 146:111–125

    Google Scholar 

  • Schlanger SO, Douglas RG (1974) The pelagic ooze-chalk-limestone transition and its implication for marine stratigraphy. Spec Pub Int Assoc Sediment 1:117–148

    Google Scholar 

  • Schön J (1983) Petrophysik. Akademie, Berlin

    Google Scholar 

  • Schön J (1996). Physical properties of rocks. Handbook of geophysical exploration. Vol 18. Pergamon, Oxford, New York

    Google Scholar 

  • Schuh H (1987) Physikalische Eigenschaften von Sandsteinen und ihren verwitterten Oberflächen. Münchner Geowiss Abh (B), Verlag Dr. Friedrich Pfeil, Munich

    Google Scholar 

  • Sebastian E, Cultrone G, Benavente D et al (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Heritage 9:66–76

    Google Scholar 

  • Segall P, Pollard DD (1980) Mechanics of discontinuous faults. J Geophys Res 85:4337–4350

    Google Scholar 

  • Shushakova V, Fuller ER Jr, Siegesmund S (2010) Influence of shape fabric and crystal texture on marble degradation phenomena: simulations. Environ Earth Sci. doi:10.1007/s12665-010-0744-7

    Google Scholar 

  • Siegesmund S (1994) Modelling of the thermal conductivity observed in paragneisses of the KTB pilot hole. Sci Drill 4:207–213

    Google Scholar 

  • Siegesmund S (1996) The significance of rock fabrics for the geophysical interpretation of geophysical anisotropies. Geotekt Forsch 85:1–123

    Google Scholar 

  • Siegesmund S, Dahms M (1994) Fabric-controlled anisotropy of elastic, magnetic and thermal properties. In: Bunge HJ, Siegesmund S, Skrotzki W et al (eds) Textures of geological materials. DGM Informationsgesellschaft, Oberursel

    Google Scholar 

  • Siegesmund S, Grimm W-D, Dürrast H et al (2010) Limestones in Germany used as building stones: an overview. In: Smith B, Gomez-Heras M, Viles H et al (eds) Limestone in the built environment: present day challenges to preserve the past. Geol Soc Spec Pub London, London

    Google Scholar 

  • Siegesmund S, Kruhl J, Lüschen E (1996) Petrophysical and seismic features of the exposed lower continental crust in Calabria (Italy): field observation versus modelling. Geotekt Forschungen 85:125–163

    Google Scholar 

  • Siegesmund S, St Mosch, Scheffzük Ch et al (2008a) The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ Geol 55:1437–1448

    Google Scholar 

  • Siegesmund S, Ruedrich J, Koch A (2008b) Marble bowing: comparative studies of different public building facades. Environ Geol 56:473–494

    Google Scholar 

  • Siegesmund S, Ruedrich J, Weiss T (2004a) Marble deterioration. In: Prikryl R (ed) Dimension stone 2004. Taylor & Francis Group, London

    Google Scholar 

  • Siegesmund S, Ullemeyer K, Weiß T et al (2000a) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Chlupac T et al (1993) Fabric-controlled anisotropy of petrophysical properties observed in KTB-core samples. Sci Drill 4:31–54

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Ullemeyer K et al (1997) Anwendung der geologischen Gefügekunde zur Charakterisierung natürlicher Werksteine—Fallbeispiel: Kauffunger Marmor. Int J Restor Build Monum 3:269–292

    Google Scholar 

  • Siegesmund S, Vollbrecht A, Weiss T (2002) Gefügeanisotropien und ihre Bedeutung für Naturwerksteine. Naturstein 7:76–81

    Google Scholar 

  • Siegesmund S, Weiß T, Vollbrecht A et al (1999) Marble as a natural building stone: rock fabrics, physical and mechanical properties. Z dtsch geol Ges 150(2):237–258

    Google Scholar 

  • Siegesmund S, Weiss T, Ruedrich J (2004b) Schadensmonitoring mittels Ultraschalldiagnostik. Restauro 2:98–105

    Google Scholar 

  • Siegesmund S, Weiss T, Tschegg EK (2000b) Control of marble weathering by thermal expansion and rock fabrics. Proceedings of 9th international congress on deterioration and conservation of stone, Venice. Elsevier, Amsterdam, pp 19–24

    Google Scholar 

  • Simmons G (1964) Velocity of compressional waves in various minerals at pressures to 10 kbars. J Geophys Res 69:1117–1121

    Google Scholar 

  • Simmons G, Cooper HW (1978) Thermal cycling cracks in three igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 15:145–148

    Google Scholar 

  • Simmons G, Nur A (1969) Properties of granites in situ and their relation to laboratory measurements. Science 162:789

    Google Scholar 

  • Sinclair SW (1980) Analysis of macroscopic fractures on Teton Anticline, Northwestern Montana. MSc Thesis, Texas A&M University

    Google Scholar 

  • Sippel J, Siegesmund S, Weiss T et al (2007) Decay of natural stones caused by fire damage. In: Prikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geol Soc Spec Pub, London

    Google Scholar 

  • Snethlage R (1984) Steinkonservierung, Forschungsprogramm des Zentrallabors für Denkmalpflege 1979–1983. Bericht für die Stiftung Volkswagenwerk. Arbeitsheft Bayr Landesamt Denkmalpflege 22. Lipp, Munich

    Google Scholar 

  • Snethlage R (2005) Leitfaden zur Steinkonservierung. Fraunhofer IRB, Stuttgart

    Google Scholar 

  • Snethlage R, Hoffmann D, Knöfel D (1986) Simulation der Verwitterung von Naturstein. Teil 2: Physikalisch-chemische Verwitterungsreaktionen. In: Wittmann FH (ed) 2nd Int Kolloqium’Werkstoffwissenschaften und Bausanierung’. Technische Akademie, Esslingen

    Google Scholar 

  • Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer N, Snethlage R (eds) Saving our architectural heritage, the conservation of historic stone structures. Dahlem Workshop Reports ES20. Wiley, Chichester

    Google Scholar 

  • Stearns DW (1967) Certain aspects of fracture in naturally deformed rocks. In Ricker RE (ed) NSF Adv Sci Sem in Rock Mech, Bedford

    Google Scholar 

  • Steindlberger E (2003) Vulkanische Gesteine aus Hessen und ihre Eigenschaften als Naturwerksteine. Geol. Abhandlungen Hessen 110:1–67

    Google Scholar 

  • Steindlberger E (2004) Volcanic tuffs from Hesse (Germany) and their weathering behaviour. Environ Geol 46:378–390

    Google Scholar 

  • Stockhausen N (1981) Die Dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung. Diss TU Munich

    Google Scholar 

  • Strohmeyer D (2003) Gefügeabhängigkeit technischer Eigenschaften. PhD thesis, Univ Göttingen

    Google Scholar 

  • Strohmeyer D, Siegesmund S (2002) Influence of anisotropic fabric properties on the mechanical strength of selected building stones. Geol Soc Spec Publ 205:114–135

    Google Scholar 

  • Stück H, Fischer C, Siegesmund S (2010) Bausteine der Region Drei Gleichen: Entstehung, Charakterisierung, Verwitterung. In: Siegesmund S, Hoppert M (eds) Die Drei Gleichen: Baudenkmäler und Naturraum. Editon Leipzig, Leipzig

    Google Scholar 

  • Stück H, Forgó Z, Ruedrich J et al (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56:699–713

    Google Scholar 

  • Szilagyi J (1995). Leitgesteine für die Denkmalpflege-Untersuchung petrophysikalischer Eigenschaften (key rocks for monument care-investigation into petrophysical properties). Research report TU Dresden http://www.tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_bauingenieurwesen/geotechnik/geologie/forschung/geologie/dateien/forschung_leitgesteine.pdf. Accessed 20 July 2009

  • Thill RE, Willard RJ, Bur TR (1969) Correlation of longitudinal velocity variation with rock fabric. J Geophys Res 74:4897–4909

    Google Scholar 

  • Thuro K, Plinninger RJ, Zäh S (2001) Scale effects in rock strength properties. Part 1: unconfined compressive test and Brazilian test. In: Särkkä P, Eloranta P (eds) Rock mechanics—a challenge for society. Proceedings of ISRM regional symposium on Eurock 2001, Espoo. Taylor and Francis Group, London

    Google Scholar 

  • Török A (2007) Geologia Mernököknek. Müegyetemi Kladno, Budapest

    Google Scholar 

  • Tournier B, Jeannette D, Destrigenville C (2000) Stone drying: an approach of the effective evaporation surface area. In: Fassina V (ed) 9th international congress on deterioration and conservation of stone. Elsevier, Amsterdam

    Google Scholar 

  • Tucker ME (1985) Einführung in die Sedimentpetrologie. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • UNI 9724/5 (1990) Materiali lapidei. determinazione della resistenza a flessione—Norma parte 5a. UNI Ente Nazionale Italiano di Unificazione, Milano

    Google Scholar 

  • van Golf-Racht TD (1996) Naturally-fractured carbonate reservoirs. In: Chilingarian GV, Mazullo SJ, Rieke HH (eds) Carbonate reservoir characterization: a geologic-engineering analysis, part II. Elsevier, Amsterdam

    Google Scholar 

  • Vázquez P, Siegesmund S, Alonso FJ (2010) Bowing of dimensional granitic stones. Environ Earth Sci. doi:10.1007/s12665-010-0882-y

    Google Scholar 

  • Vietor T (1993) Entfestigung von KTB-Gesteinen im Kriechexperiment unter dem Einfluß verschiedener Flüssigkeiten. Diplom Thesis Univ Göttingen

    Google Scholar 

  • Viles HA, Camuffo D, Fitz S et al (1997) Group report: what is the state of our knowledge of the mechanisms of deterioration and how good are our estimates of rates of deterioration? In: Baer NS, Snethlage R (eds) Report of the Dahlem workshop on saving our architectural heritage: the conservation of historic stone structures. Wiley, Hoboken

    Google Scholar 

  • von Moos A, De Quervain F (1948) Technische Gesteinskunde. Birkhäuser, Basel

    Google Scholar 

  • Vos BH (1978) Hygric methods fort he determination of the behaviour of stones. International symposium on deterioration of stone monuments. UNESCO-RILEM, Paris

    Google Scholar 

  • Wangler TP, Scherer GW (2008) Clay swelling mechanism in claybearing sandstones. Environ Geol 56:529–534

    Google Scholar 

  • Wangler TP, Stratulat A, Duffus P, Prevost JH, Scherer GW (2010) Flaw propagation and buckling in clay-bearing sandstones. Environ Earth Sci. doi:10.1007/s12665-010-0732-y

    Google Scholar 

  • Washburn EW (1921) A method of determining the distribution of pore sizes in a porous material. Proc Nat Acad Sci 7:115

    Google Scholar 

  • Weiss G (1992) Die Eis- und Salzkristallisation im Porenraum von Sandsteinen und ihre Auswirkungen auf das Gefüge unter besonderer Berücksichtigung gesteinsspezifischer Parameter. Münchner Geowiss Abh B 9, Verlag Dr. Friedrich Pfeil, Munich

    Google Scholar 

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2001) Thermal microcracking in Carrara marble. Z dtsch geol Ges 152(2-4):621–636

    Google Scholar 

  • Weiss T, Rasolofosaon PNJ, Siegesmund S (2002a) Ultrasonic velocities as a diagnostic tool for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society Special Publications, London

    Google Scholar 

  • Weiss T, Siegesmund S, Bohlen T (1999) Seismic, structural, and petrological models of the subcrustal lithosphere in southern Germany: a quantitative reevaluation. Pure Appl Geophys 156:53–81

    Google Scholar 

  • Weiss T, Siegesmund S, Rasolofosaon P (2000) The deterioration velocity-porosity-relation constraint. 9th international congress on deterioration and conservation of stone, Venice 19–24, Elsevier 215–223

    Google Scholar 

  • Weiss T, Siegesmund S, Fuller E Jr (2002b) Microstructure-based finite element modeling of microcrack formation in marbles. Geol Soc Spec Publ 205:88–101

    Google Scholar 

  • Weiss T, Siegesmund S, Kirchner D et al (2004a) Insolation weathering and hygric dilatation as a control on building stone degradation. Environ Geol 46(3–4):402–413

    Google Scholar 

  • Weiss T, Strohmeyer D, Kirchner D et al (2004b) Weathering of stones caused by thermal expansion, hygric properties and freeze-thaw cycles. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of 10th international congress on deterioration and conservation of stone. ICOMOS, Stockholm

    Google Scholar 

  • Wendler E, Charola EA, Fitzner B (1996) Easter Island tuff: laboratory studies for its consolidation. In: Riederer J (ed) Proceedings of 8th international congress deterioration and conservation of stone. Möller Druck and Verlag GmbH, Berlin

    Google Scholar 

  • Wendler E, Rückert-Thümling R (1992) Gefügezerstörendes Verformungsverhalten bei salzbefrachteten Sandsteinen unter hygrischer Wechselbelastung. In: Wittmann FH (ed) Materials science and restoration. Expert, Renningen

    Google Scholar 

  • Wenk HR (1985) Preferred orientation in deformed metals and rocks. An introduction to modern texture analysis. Academic, Orlando

    Google Scholar 

  • Wenk HR, Wenk E (1969) Physical constants of alpine rocks (density, porosity, specific heat, thermal diffusivity and conductivity). Schweiz Min Petrogr Mitt 49:343–357

    Google Scholar 

  • Wenzel A, Häfner F (2003) Die roten Werksandsteine der Westpfalz. IFS-Report 15. Institut für Steinkonservierung, Mainz

    Google Scholar 

  • Wesche K (1981) Baustoffe für tragende Bauteile. 2nd ed., Vol 2. Bauverlag, Wiesbaden

    Google Scholar 

  • Winkler EM (1994) Stone in architecture. Springer, Berlin

    Google Scholar 

  • Winkler EM (1996) Technical note: properties of marble as building veneer. Int J Rock Mech Min Sci 33(2):215–218

    Google Scholar 

  • Wollard GP (1959) Crustal structure from gravity and seismic measurements. J Geophys Res 64:1521–1544

    Google Scholar 

  • Woodside W, Messmer J (1961) Thermal conductivity of porous media. II. Consolidated rocks. J Appl Phys 32(9):1699–1706

    Google Scholar 

  • Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. Geol Soc Spec Publ 205:64–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Siegesmund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegesmund, S., Dürrast, H. (2014). Physical and Mechanical Properties of Rocks. In: Siegesmund, S., Snethlage, R. (eds) Stone in Architecture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45155-3_3

Download citation

Publish with us

Policies and ethics