Skip to main content

On the Parameterized Complexity of Computing Graph Bisections

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8165))

Included in the following conference series:

Abstract

The Bisection problem asks for a partition of the vertices of a graph into two equally sized sets, while minimizing the cut size. This is the number of edges connecting the two vertex sets. Bisection has been thoroughly studied in the past. However, only few results have been published that consider the parameterized complexity of this problem.

We show that Bisection is FPT w.r.t. the minimum cut size if there is an optimum bisection that cuts into a given constant number of connected components. Our algorithm applies to the more general Balanced Biseparator problem where vertices need to be removed instead of edges. We prove that this problem is W[1]-hard w.r.t. the minimum cut size and the number of cut out components.

For Bisection we further show that no polynomial-size kernels exist for the cut size parameter. In fact, we show this for all parameters that are polynomial in the input size and that do not increase when taking disjoint unions of graphs. We prove fixed-parameter tractability for the distance to constant cliquewidth if we are given the deletion set. This implies fixed-parameter algorithms for some well-studied parameters such as cluster vertex deletion number and feedback vertex set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory of Computing Systems 39(6), 929–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbenz, P.: Personal communication, ETH Zürich (2013)

    Google Scholar 

  3. P. Arbenz, G. van Lenthe, U. Mennel, R. Müller, and M. Sala. Multi-level μ-finite element analysis for human bone structures. In Proc. 8th PARA, volume 4699 of LNCS, pages 240–250. Springer, 2007.

    Chapter  Google Scholar 

  4. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Science 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp. 165–176. Dagstuhl (2011)

    Google Scholar 

  8. Bui, T.N., Peck, A.: Partitioning planar graphs. SIAM J. Comput. 21(2), 203–215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bui, T.N., Chaudhuri, S., Leighton, F.T., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7(2), 171–191 (1987)

    Article  MathSciNet  Google Scholar 

  10. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer (2010)

    Google Scholar 

  14. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Feldmann, A.E.: Fast balanced partitioning is hard, even on grids and trees. Theor. Comput. Sci. 485, 61–68 (2013)

    Article  MathSciNet  Google Scholar 

  16. Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications. In: Proc. 29th STACS. LIPIcs, vol. 14, pp. 100–111. Dagstuhl (2012)

    Google Scholar 

  17. Feldmann, A.E., Widmayer, P.: An \(\mathcal{O}(n^4)\) time algorithm to compute the bisection width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\mathcal{F}\)-deletion: Approximation, kernelization and optimal fpt algorithms. In: Proc. 53rd FOCS, pp. 470–479. IEEE Computer Society (2012)

    Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)

    Google Scholar 

  20. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Science 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  22. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)

    Article  Google Scholar 

  23. Khot, S.A., Vishnoi, N.K.: The Unique Games Conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1. In: Proc. 46th FOCS, pp. 53–62. IEEE Computer Society (2005)

    Google Scholar 

  24. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. ACM T. Graphic. 22(3), 277–286 (2003)

    Article  Google Scholar 

  26. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. MacGregor, R.M.: On Partitioning a Graph: a Theoretical and Empirical Study. PhD thesis, University of California, Berkeley (1978)

    Google Scholar 

  28. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marx, D., O’Sullivan, B., Razgon, I.: Treewidth reduction for constrained separation and bipartization problems. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 561–572. Dagstuhl (2010)

    Google Scholar 

  30. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. CoRR, abs/1110.4765 (2011)

    Google Scholar 

  31. Oum, S.: Approximating rank-width and clique-width quickly. ACM T. Algorithms 5 (1) (2008)

    Google Scholar 

  32. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proc. 40th STOC, pp. 255–264. ACM (2008)

    Google Scholar 

  33. Soumyanath, K., Deogun, J.S.: On the bisection width of partial k-trees. In: Proc. 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, vol. 74, pp. 25–37 (1990)

    Google Scholar 

  34. Wiegers, M.: The k-section of treewidth restricted graphs. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 530–537. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O. (2013). On the Parameterized Complexity of Computing Graph Bisections. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45043-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45042-6

  • Online ISBN: 978-3-642-45043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics