Skip to main content

A Human-Inspired Collision Avoidance Method for Multi-robot and Mobile Autonomous Robots

  • Conference paper
PRIMA 2013: Principles and Practice of Multi-Agent Systems (PRIMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8291))

Abstract

In this paper a novel and dynamic rectangular roundabout (‘rectabout’) collision avoidance method based on human behaviour is presented for multiple, homogeneous, autonomous and mobile robots. The approach does not depend on priority schemes and instead involves only local views. There is therefore no need for inter-robot communication. The decentralized collision avoidance maneuver employs a virtual rectabout that allows each robot to re-plan its path. This maneuver is calculated independently by each robot involved in the possible collision. The virtual rectabout lies in the intersecting and conflicting position of two robot routes. Experimental simulations involving multi-robot systems indicate that virtual rectabouts ensure that all robots remain free of collision while attempting to follow their goal direction. Comparisons with a centralized collision detection and avoidance approach demonstrate no additional move costs. However, the advantages of rectabouts are that no inter-robot communication or centralized coordination is required, thereby cutting down significantly on communication and coordination overheads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das, S., Goswami, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Information Processing Letters 94(6), 259–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. Journal of Algorithms 12(1), 38–56 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete & Computational Geometry 11(1), 321–350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Information Processing Letters 65(2), 95–99 (1998)

    Article  MathSciNet  Google Scholar 

  5. Mahapatra, P.R.S., Karmakar, A., Das, S., Goswami, P.P.: k-enclosing axis-parallel square. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 84–93. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Pang, S., Liu, F., Kadobayashi, Y., Ban, T., Inoue, D.: Training minimum enclosing balls for cross tasks knowledge transfer. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp. 375–382. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Berlin (2002)

    Book  Google Scholar 

  8. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers & Mathematics with Applications 29(8), 45–61 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. De, M., Maheshwari, A., Nandy, S.C., Smid, M.H.M.: An in-place min-max priority search tree. Computational Geometry 46(3), 310–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, F., Narayanan, A.: Roundabout collision avoidance for multiple robots based on minimum enclosing rectangle (demonstration). In: AAMAS, pp. 1375–1376 (May 2013)

    Google Scholar 

  11. Olivier, A.H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture 36(3), 399–404 (2012)

    Article  Google Scholar 

  12. Olivier, A.H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A kinematic cue to investigate collision avoidance between walkers. Computer Methods in Biomechanics and Biomedical Engineering 15(1), 240–242 (2012)

    Article  Google Scholar 

  13. Liu, F., Narayanan, A., Bai, Q.: Effective methods for generating collision free paths for multiple robots based on collision type (demonstration). In: AAMAS, pp. 1459–1460 (June 2012)

    Google Scholar 

  14. Wikipedia: Autonomous car (May 2013)

    Google Scholar 

  15. Spectrum, I.: How google’s self-driving car works (October 2011)

    Google Scholar 

  16. Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robotics and Autonomous Systems 41(2-3), 89–99 (2002)

    Article  Google Scholar 

  17. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: RSS (July 2009)

    Google Scholar 

  18. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent path finding. In: AAAI, pp. 563–569 (June 2012)

    Google Scholar 

  19. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Autonomous Robots 32(3), 207–226 (2012)

    Article  Google Scholar 

  20. Škrjanc, I., Klančar, G.: Optimal cooperative collision avoidance between multiple robots based on bernstein-bézier curves. Robotics and Autonomous Systems 58(1), 1–9 (2010)

    Article  Google Scholar 

  21. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: ISRR, pp. 3–19 (August 2009)

    Google Scholar 

  22. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics 27(4), 696–706 (2011)

    Article  Google Scholar 

  23. van Toll, W., Cook IV, A.F., Geraerts, R.: Navigation meshes for realistic multi-layered environments. In: IROS, pp. 3526–3532 (September 2011)

    Google Scholar 

  24. Kato, S., Nishiyama, S., Takeno, J.: Coordinating mobile robots by applying traffic rules. In: IROS, pp. 1535–1541 (July 1992)

    Google Scholar 

  25. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Massey, W.S.: Cross products of vectors in higher dimensional euclidean spaces. The American Mathematical Monthly 90(10), 697–701 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA, pp. 1928–1935 (May 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, F., Narayanan, A. (2013). A Human-Inspired Collision Avoidance Method for Multi-robot and Mobile Autonomous Robots. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds) PRIMA 2013: Principles and Practice of Multi-Agent Systems. PRIMA 2013. Lecture Notes in Computer Science(), vol 8291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44927-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44926-0

  • Online ISBN: 978-3-642-44927-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics