Skip to main content

Applied Cell Biology of Sulphur and Selenium in Plants

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

Sulphur (S) is required in considerable amounts by all organisms, while selenium (Se) is beneficial for plants and essential for animals albeit in only small amounts. Due to their chemical similarity that is in parts also shared with molybdenum and chromium, inorganic sulphate and selenate are taken up by plants and assimilated in reduced form into organic compounds, most notably cysteine and selenocysteine, respectively. Uptake, reduction, and storage of S and Se compounds underlie complex cellular processes that need to be understood before successful translation into improved plants for human and animal diets can be achieved. Genetic engineering, breeding, and plant production approaches use insights from cell biology and basic research to introduce tailor-made desirable traits related to S and Se metabolism. Several examples for this approach will be discussed. In terms of enhanced crop quality, the so-called push and pull approaches to improve seed S amino acid compositions draw heavily from cell biology research. In pull or sink approaches, the expression of S-rich seed storage proteins is put under the control of seed-specific promoters. Such proteins possibly carry a targeting signal for the endoplasmic reticulum to achieve deposition in protein bodies. The regulation of some health-promoting compounds of Se together with S compounds such as glucoraphanin in Brassicaceae has received considerable attention in the recent past. However, to achieve high contents of Se metabolites simultaneously with the health-promoting S-containing compounds is challenging due to the crosstalk between the two pathways. The concept of S-enhanced defence linking S nutrition of plants with enhanced synthesis of S-containing defence compounds has been supported by considerable experimental data from basic research. Some of the recent findings regarding the role and potential biotechnological applications of some of these S-containing defence compounds including glutathione, phytoalexins, and glucosinolates are discussed in this chapter. Much progress has been achieved in the enrichment of Se contents in Brassica plants, while more basic research is required to enhance seed S contents and to understand how S nutrition is linked to plant defence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    CAS  PubMed  Google Scholar 

  • Anderson J (1993) Selenium interactions in sulfur metabolism. In: Kock D et al (eds) Sulfur nutrition and assimilation in higher plants: regulatory agricultural and environmental aspects. SPB Academic, The Hague

    Google Scholar 

  • Arvy M (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    CAS  Google Scholar 

  • Asher C, Butler G, Peterson P (1977) Selenium transport in root systems of tomato. J Exp Bot 28:279–291

    CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Hasegawa D, Thompson-Eagle ET, Frankenberger WT Jr (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environ Sci Technol 24:1326–1332

    CAS  Google Scholar 

  • Bañuelos G (2001) The green technology of selenium phytoremediation. Biofactors 14:255–260

    PubMed  Google Scholar 

  • Bañuelos G, Schrale G (1989) Plants that remove selenium from soils. Calif Agric 43:19–20

    Google Scholar 

  • Bañuelos G, Ajwa H, Mackey B, Wu L, Cook C, Akohoue S, Zambruzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Google Scholar 

  • Beck MA (2001) Antioxidants and viral infections: host immune response and viral pathogenicity. J Am Coll Nutr 20:384–388

    Google Scholar 

  • Beckett GJ, Arthur JR, Miller SM, McKenzie RC (2004) Selenium, diet and human immune function. Springer, Heidelberg, pp 217–240

    Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A (2009) A glucosinolate metabolism pathway in living plant cells mediates broad–spectrum antifungal defense. Science 323:101–106

    CAS  PubMed  Google Scholar 

  • Bera S, De Rosa E, Rachidi A, Diamond AM (2013) Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 28:127–134

    CAS  PubMed  Google Scholar 

  • Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    CAS  Google Scholar 

  • Bittner F, Mendel RR (2010) Cell biology of molybdenum. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, vol 17, Plant cell monographs. Springer, Heidelberg

    Google Scholar 

  • Bloem E, Haneklaus S, Schnug E (2005) Significance of sulfur compounds in the protection of plants against pests and diseases. J Plant Nutr 28:763–784

    CAS  Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S et al (2010) Seed–based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    CAS  PubMed  Google Scholar 

  • Boue SM, Cleveland TE, Carter-Wientjes C, Shih BY, Bhatnagar D, McLachlan JM, Burow ME (2009) Phytoalexin–enriched functional foods. J Agric Food Chem 57:2614–2622

    CAS  PubMed  Google Scholar 

  • Broyer T, Johnson C, Huston R (1972) Selenium and nutrition of Astragalus. Plant Soil 36:651–669

    CAS  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3; 1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    CAS  PubMed  Google Scholar 

  • Carvalho KM, Gallardo-Williams MT, Benson RF, Martin DF (2003) Effects of selenium supplementation on four agricultural crops. J Agric Food Chem 51:704–709

    CAS  PubMed  Google Scholar 

  • Charron A, Coddeville P, Sauvage S, Galloo JC, Guillermo R (2001) Possible source areas and influential factors for sulfur compounds in Morvan, France. Atmos Environ 35:1387–1393

    CAS  Google Scholar 

  • Chiaiese P, Ohkama-Ohtsu N, Molvig L, Godfree R, Dove H, Hocart C, Fujiwara T, Higgins T, Tabe LM (2004) Sulfur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulfur. J Exp Bot 55:1889–1901

    CAS  PubMed  Google Scholar 

  • Clarke BD (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325

    CAS  Google Scholar 

  • Clark LC, Combs GF Jr, Turnbull BW et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. Nutritional prevention of cancer study group. JAMA 276:1957–1963

    CAS  PubMed  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthethase. Plant J 16:73–78

    CAS  PubMed  Google Scholar 

  • Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517–547

    CAS  PubMed  Google Scholar 

  • de Souza MP, Pilon-Smits EA, Lytle CM, Hwang S, Tai J, Honma TS, Yeh L, Terry N (1998) Rate–limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    PubMed Central  PubMed  Google Scholar 

  • Dixon DP, Cummins L, Cole DJ, Edwards R (1998) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266

    CAS  PubMed  Google Scholar 

  • Edwards R, Blount JW, Dixon RA (1991) Glutathione and elicitation of the phytoalexin response in legume cultures. Planta 184:403–409

    CAS  PubMed  Google Scholar 

  • El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    PubMed Central  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    CAS  PubMed  Google Scholar 

  • Finley JW (2003) Reduction of cancer risk by consumption of selenium–enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of Broccoli. J Med Food 6:19–26

    CAS  PubMed  Google Scholar 

  • Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63:196–202

    PubMed  Google Scholar 

  • Finley JW, Davis CD, Feng Y (2000) Selenium from high selenium broccoli protects rats from colon cancer. J Nutr 130:2384–2389

    CAS  PubMed  Google Scholar 

  • Fodor J, Gullner G, Adam AL, Barna B, Komives T, Kiraly Z (1997) Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco (role in systemic acquired resistance). Plant Physiol 114:1443–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Rennenberg H (2000) Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. In: Brunold C et al (eds) Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt Publishers, Berne

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frendo P, Jimenez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Herouart D, Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126:1706–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganther H (1986) Pathways of selenium metabolism including respiratory excretory products. Int J Toxicol 5:1–5

    CAS  Google Scholar 

  • Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20:1657–1666

    CAS  PubMed  Google Scholar 

  • Ganther HE, Robert Lawrence J (1997) Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention. Tetrahedron 53:12299–12310

    CAS  Google Scholar 

  • Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, Taylor MA, Hawkey CJ, Barrett DA, Mithen RF (2005) Glutathione S–transferase M1 polymorphism and metabolism of sulforafane from standard and high–glucosinolate broccoli. Am J Clin Nutr 82:1283–1291

    CAS  PubMed  Google Scholar 

  • Geu-Flores F, Olsen CE, Halkier BA (2009) Towards engineering glucosinolates into non–cruciferous plants. Planta 229:261–270

    CAS  PubMed  Google Scholar 

  • Geu-Flores F, Møldrup ME, Boettcher C, Olsen CE, Scheel D, Halkier BA (2011) Cytosolic γ-Glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23:2456–2469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gullner G, Komives T (2001) The role of glutathione and glutathione–related enzymes in plant-pathogen interactions. In: Grill D et al (eds) Significance of glutathione in plant adaptation to the environment. Kluwer Academic, Dordrecht

    Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    CAS  PubMed  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    CAS  PubMed  Google Scholar 

  • Haneklaus S, Walker KC, Schnug E (2005) A chronicle of sulfur research in agriculture. In: Saito K et al (eds) Sulfur transport and assimilation in plants in the post genomic era. Backhuys, Leiden

    Google Scholar 

  • Hawkesford MJ (2008) Uptake, distribution and subcellular transport of sulfate. In: Hell R et al (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis respiration. Springer, Dordrecht

    Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low–affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–857

    CAS  PubMed  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    CAS  PubMed  Google Scholar 

  • Hell R, Dahl C, Knaff DB, Leustek T (2008) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht

    Google Scholar 

  • Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154

    PubMed Central  PubMed  Google Scholar 

  • Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K (2006) Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J 48:557–571

    CAS  PubMed  Google Scholar 

  • Holland K, O’Keefe S (2010) Recent applications of peanut phytoalexins. Recent Patents Food Nutr Agric 2:221

    CAS  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    CAS  PubMed  Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207

    CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu F-C, Wirtz M, Heppel SC, Bogs J, Krämer U, Khan MS, Bub A, Hell R, Rausch T (2011) Generation of Se-fortified broccoli as functional food: impact of Se-fertilization on S-metabolism. Plant Cell Environ 34:192–207

    CAS  PubMed  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    CAS  PubMed  Google Scholar 

  • Ip C (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    CAS  PubMed  Google Scholar 

  • Jez JM, Fukagawa NK (2008) Plant sulfur compounds and human health. In: Jez JM (ed) Sulfur: a missing link between soils, crops and nutrition, vol 50, Agronomy monograph. CSA Publ, Madison

    Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity – direct and indirect recognition of general and specific pathogen–associated molecules. Curr Opin Immunol 16:48–62

    CAS  PubMed  Google Scholar 

  • Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforafane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    CAS  PubMed  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MS, Hell R (2008) A future crop biotechnology view of sulfur and selenium. In: Joseph J (ed) Sulfur: a missing link between soils, crops, and nutrition, vol 50, Agronomy monograph. CSA Publ, Madison

    Google Scholar 

  • Klapheck S (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732

    CAS  Google Scholar 

  • Klein EA, Thompson IM Jr, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306:1549–1556

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    CAS  PubMed  Google Scholar 

  • Kruse J, Kopriva S, Hansch R, Krauss GJ, Mendel RR, Rennenberg H (2007) Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Plant Biol 9:638–646

    CAS  PubMed  Google Scholar 

  • Kruse C, Haas FH, Jost R, Reiser B, Reichelt M, Wirtz M, Gershenzon J, Schnug E, Hell R (2012) Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. J Plant Physiol 169:740–743

    CAS  PubMed  Google Scholar 

  • Kutschy P, Mezencev R (2008) Indole phytoalexins from Brassicaceae: synthesis and anticancer activity. Targets in heterocyclic systems. Chem Prop 12:120–148

    CAS  Google Scholar 

  • Läuchli A (1993) Selenium in plants: uptake, functions, and environmental toxicity. Bot Acta 106:455–468

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, Neuhierl B (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    CAS  PubMed  Google Scholar 

  • Leggett JE, Epstein E (1956) Kinetics of sulfate absorption by barley roots. Plant Physiol 31:222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemly AD (1997) Environmental implications of excessive selenium: a review. Biomed Environ Sci 10:415–435

    CAS  PubMed  Google Scholar 

  • Lewis B, Johnson C, Delwiche C (1966) Release of volatile selenium compounds by plants. Collection procedures and preliminary observations. J Agric Food Chem 14:638–640

    CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    CAS  PubMed  Google Scholar 

  • Lin Y, Pajak A, Marsolais F, McCourt P, Riggs CD (2013) Characterization of a cruciferin deficient mutant of Arabidopsis and its utility for overexpression of foreign proteins in plants. PLoS One 8:e64980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipmann SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 301:39–51

    Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    CAS  PubMed  Google Scholar 

  • Makela AL, Nanto V, Makela P, Wang W (1993) The effect of nationwide selenium enrichment of fertilizers on selenium status of healthy Finnish medical students living in south western Finland. Biol Trace Elem Res 36:151–157

    CAS  PubMed  Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci USA 91:10059–10063

    CAS  PubMed  Google Scholar 

  • Meyer AJ, Rausch T (2008) Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Hell R et al (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht

    Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    CAS  PubMed  Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79

    CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Müller S, Heider J, Boeck A (1997) The path of unspecific incorporation of selenium in Escherichia coli. Arch Microbiol 168:421–427

    PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress–responsive gene expression. Photosynth Res 86:459–474

    CAS  PubMed  Google Scholar 

  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • NG BH, Anderson JW (1978) Synthesis of selenocysteine by cysteine synthases from selenium accumulator and non-accumulator plants. Phytochemistry 17:2069–2074

    CAS  Google Scholar 

  • Ng TB, Ye XJ, Wong JH, Fang EF, Chan YS, Pan W, Ye XY, Sze SCW, Zhang KY, Liu F (2011) Glyceollin, a soybean phytoalexin with medicinal properties. Appl Microbiol Biotechnol 90:59–68

    CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian J-C, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    CAS  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    PubMed  Google Scholar 

  • Onouchi H, Lambein I, Sakurai R, Suzuki A, Chiba Y, Naito S (2004) Autoregulation of the gene for cystathionine γ-synthase in Arabidopsis: post–transcriptional regulation induced by S-adenosylmethionine. Biochem Soc Trans 32:597–600

    CAS  PubMed  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2006) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    PubMed  Google Scholar 

  • Pedras MSC (2008) The chemical ecology of crucifers and their fungal pathogens: boosting plant defenses and inhibiting pathogen invasion. Chem Rec 8:109–115

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE (2010) Phytoalexins from Brassicaceae: news from the front. Phytochemistry 71:1191–1197

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Gadagi RS, Jha M, Sarma-Mamillapalle VK (2007) Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochemistry 68:1572–1578

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011a) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Hossain S, Snitynsky RB (2011b) Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. Phytochemistry 72:199–206

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EHA, Quinn FC, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    CAS  PubMed  Google Scholar 

  • Poggi V, Arcioni A, Filippini P, Pifferi PG (2000) Foliar application of selenite and selenate to potato (Solanum tuberosum): effect of a ligand agent on selenium content of tubers. J Agric Food Chem 48:4749–4751

    CAS  PubMed  Google Scholar 

  • Price CA (1957) A new thiol in legumes. Nature 180:148–149

    CAS  PubMed  Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol (Stuttg) 9:565–572

    CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    CAS  PubMed  Google Scholar 

  • Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    CAS  PubMed  Google Scholar 

  • Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian J-C, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983

    CAS  PubMed  Google Scholar 

  • Rüegsegger A, Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–433

    PubMed Central  PubMed  Google Scholar 

  • Sabbagh M, Van Hoewyk D (2012) Malformed selenoproteins are removed by the ubiquitin-proteasome pathway in Stanleya pinnata. Plant Cell Physiol 53:555–564

    CAS  PubMed  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97

    PubMed  Google Scholar 

  • Schiavon M, Wirtz M, Borsa P, Quaggiotti S, Hell R, Malagoli M (2008) Chromate differentially affects the expression of a high affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.). Plant Biol 9:662–671

    Google Scholar 

  • Schiavon M, Galla G, Wirtz M, Pilon-Smits EHC, Telatin V, Quaggiotti S, Hell R, Barcaccia G, Malagoli M (2012) Transcriptome profiling of genes differentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a complex S-Cr interplay on sulfate transport regulation in B. juncea. J Hazard Mater 239–240:192–205

    PubMed  Google Scholar 

  • Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P (2008) The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J 55:774–786

    CAS  PubMed  Google Scholar 

  • Schneider S, Bergmann L (1995) Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot Acta 108:34–40

    CAS  Google Scholar 

  • Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies. III: statistical associations with dietary selenium intakes. Bioinorg Chem 7:23–31

    CAS  PubMed  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuhegger R, Rauhut T, Glawischnig E (2007) Regulatory variability of camalexin biosynthesis. J Plant Physiol 164:636–644

    CAS  PubMed  Google Scholar 

  • Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R, Masci S (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    CAS  PubMed  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Taverac H, Avudainayaga S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  PubMed  Google Scholar 

  • Shibagaki N, Grossman AR (2005) Approaches using yeast cells to probe the function of STAS domain in SULTR1;2. In: Saito K et al (eds) Sulfur transport and assimilation in plants in the post genomic era. Backhuys, Leiden

    Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate–resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    CAS  PubMed  Google Scholar 

  • Shrift A, Ulrich JM (1969) Transport of selenate and selenite into astragalus roots. Plant Physiol 44:893–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirko A, Blaszczyk A, Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55:1881–1888

    CAS  PubMed  Google Scholar 

  • Smith C (1996) Transley review no. 86 accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132:1–45

    CAS  Google Scholar 

  • Smoliga JM, Baur JA, Hausenblas HA (2011) Resveratrol and health – a comprehensive review of human clinical trials. Mol Nutr Food Res 55:1129–1141

    CAS  PubMed  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    PubMed  Google Scholar 

  • Song S, Hou W, Godo I, Wu C, Ma X, Han T, Amir R (2013) Enhanced level of methionine in transgenic soybean seeds expressing the Arabidopsis cystathionine γ-synthase gene. J Exp Bot 64:1917–1926

    CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    CAS  PubMed  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Tabe L, Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3:282–286

    Google Scholar 

  • Tabe L, Hagan N, Higgins TJ (2002) Plasticity of seed protein composition in response to nitrogen and sulfur availability. Curr Opin Plant Biol 5:212–217

    CAS  PubMed  Google Scholar 

  • Tabe L, Wirtz M, Molvig M, Droux M, Hell R (2010) Over–expression of serine acetyltransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume. J Exp Bot 61:721–733

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182

    CAS  PubMed  Google Scholar 

  • Terry N, Zayed A, De Souza M, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432

    CAS  Google Scholar 

  • Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F (2010) A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell 22:468–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    CAS  Google Scholar 

  • Ullmann P, Gondet L, Potier S, Bach TJ (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236:662–669

    CAS  PubMed  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (2003) USDA national nutrient database for standard reference, release 16. Nutrient Data Laboratory Home page. http://www.nal.usda.gov/fnic/foodcomp

  • Valdez-Barilla JR, Quinn CF, Pilon-Smits EAH (2011) Selenium accumulation in plants – phytotechnological applications and ecological implications. Int J Phytoremediation 13:166–178

    Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Vleet JF, Ferrans VJ (1992) Etiologic factors and pathologic alterations in selenium-vitamin E deficiency and excess in animals and humans. Biol Trace Elem Res 33:1–21

    PubMed  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    CAS  PubMed  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    CAS  PubMed  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    CAS  PubMed  Google Scholar 

  • Wang CL, Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31:1093–1104

    CAS  PubMed  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wetter L, Chisholm M (1968) Sources of sulfur in the thioglucosides of various higher plants. Can J Biochem 46:931–935

    CAS  PubMed  Google Scholar 

  • Whanger P (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91:11–28

    CAS  PubMed  Google Scholar 

  • White P, Bowen H, Parmaguru P, Fritz M, Spracklen W, Spiby R, Meacham M, Mead A, Harriman M, Trueman L (2004) Interactions between selenium and sulfur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    CAS  PubMed  Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    CAS  PubMed  Google Scholar 

  • Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Rad Biol Med 27:322–328

    CAS  PubMed  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257

    CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yang F, Chen L, Hu Q, Pan G (2003) Effect of the application of selenium on selenium content of soybean and its products. Biol Trace Elem Res 93:249–256

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    CAS  PubMed  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Gross KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent Auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    CAS  PubMed  Google Scholar 

  • Zuber H, Davidian J-C, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber H, Davidian J-C, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulfate content and modified proteome suggesting metabolic adaptations to altered sulfate compartmentalization. BMC Plant Biol 10:78

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, M.S., Hell, R. (2014). Applied Cell Biology of Sulphur and Selenium in Plants. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_8

Download citation

Publish with us

Policies and ethics