Skip to main content

The Physiological Roles of Arrestin-1 in Rod Photoreceptor Cells

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Arrestin-1 is the second most abundant protein in rod photoreceptors and is nearly equimolar to rhodopsin. Its well-recognized role is to “arrest” signaling from light-activated, phosphorylated rhodopsin, a prototypical G protein-coupled receptor. In doing so, arrestin-1 plays a key role in the rapid recovery of the light response. Arrestin-1 exists in a basal conformation that is stabilized by two independent sets of intramolecular interactions. The intramolecular constraints are disrupted by encountering (1) active conformation of the receptor (R*) and (2) receptor-attached phosphates. Requirement for these two events ensures its highly specific high-affinity binding to phosphorylated, light-activated rhodopsin (P-R*). In the dark-adapted state, the basal form is further organized into dimers and tetramers. Emerging data suggest pleiotropic roles of arrestin-1 beyond the functional range of rod cells. These include light-induced arrestin-1 translocation from the inner segment to the outer segment, a process that may be protective against cellular damage incurred by constitutive signaling. Its expanding list of binding partners also hints at additional, yet to be characterized functions. Uncovering these novel roles of arrestin-1 is a subject of future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alloway PG, Howard L, Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138

    Article  CAS  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor DA, Matthews G, Yau KW (1980) Two components of electrical dark noise in toad retinal rod outer segments. J Physiol 309:591–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bownds D (1967) Site of attachment of retinal in rhodopsin. Nature 216:1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Brannock MT, Weng K, Robinson PR (1999) Rhodopsin’s carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro. Biochemistry 38:3770–3777

    Article  CAS  PubMed  Google Scholar 

  • Broekhuyse RM, Tolhuizen EF, Janssen AP, Winkens HJ (1985) Light induced shift and binding of S-antigen in retinal rods. Curr Eye Res 4:613–618

    Article  CAS  PubMed  Google Scholar 

  • Calvert PD, Strissel KJ, Schiesser WE, Pugh EN Jr, Arshavsky VY (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16:560–568

    Article  CAS  PubMed  Google Scholar 

  • Carr RE, Gouras P (1965) Oguchi’s disease. Arch Ophthalmol 73:646–656

    Article  CAS  PubMed  Google Scholar 

  • Carr RE, Ripps H, Siegel IM (1966a) Rhodopsin and visual thresholds in congenital night blindness. J Physiol 186:103P–104P

    CAS  PubMed  Google Scholar 

  • Carr RE, Ripps H, Siegel IM, Weale RA (1966b) Visual functions in congenital night blindness. Invest Ophthalmol 5:508–514

    CAS  PubMed  Google Scholar 

  • Chan S, Rubin WW, Mendez A, Liu X, Song X, Hanson SM, Craft CM, Gurevich VV, Burns ME, Chen J (2007) Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice. Invest Ophthalmol Vis Sci 48:1968–1975

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267:374–377

    Article  CAS  PubMed  Google Scholar 

  • Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI (1999a) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 96:3718–3722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Simon MI, Matthes MT, Yasumura D, LaVail MM (1999b) Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest Ophthalmol Vis Sci 40:2978–2982

    CAS  PubMed  Google Scholar 

  • Chen J, Shi G, Concepcion FA, Xie G, Oprian D, Chen J (2006) Stable rhodopsin/arrestin complex leads to retinal degeneration in a transgenic mouse model of autosomal dominant retinitis pigmentosa. J Neurosci 26:11929–11937

    Article  CAS  PubMed  Google Scholar 

  • Cideciyan AV, Zhao X, Nielson L, Khani SC, Jacobson SG, Palczewski K (1998) Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci USA 95:328–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffa S, Breitman M, Spiller BW, Gurevich VV (2011) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50:6951–6958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen GB, Oprian DD, Robinson PR (1992) Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 31:12592–12601

    Article  CAS  PubMed  Google Scholar 

  • Concepcion F, Chen J (2010) Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration. PLoS One 5:e10904

    Article  PubMed Central  PubMed  Google Scholar 

  • Concepcion F, Mendez A, Chen J (2002) The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors. Vision Res 42:417–426

    Article  CAS  PubMed  Google Scholar 

  • Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619

    CAS  PubMed  Google Scholar 

  • Deretic D, Schmerl S, Hargrave PA, Arendt A, McDowell JH (1998) Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc Natl Acad Sci USA 95:10620–10625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doan T, Mendez A, Detwiler PB, Chen J, Rieke F (2006) Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses. Science 313:530–533

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362

    Article  CAS  PubMed  Google Scholar 

  • Gorn RA, Kuwabara T (1967) Retinal damage by visible light. A physiologic study. Arch Ophthalmol 77:115–118

    Article  CAS  PubMed  Google Scholar 

  • Grimm C, Wenzel A, Hafezi F, Yu S, Redmond TM, Reme CE (2000) Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nat Genet 25:63–66

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Chen C-Y, Kim CM, Benovic JL (1994) Visual arrestin binding to rhodopsin: Intramolecular interaction between the basic N-terminus and acidic C-terminus of arrestin may regulate binding selectivity. J Biol Chem 269:8721–8727

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hafezi F, Steinbach JP, Marti A, Munz K, Wang ZQ, Wagner EF, Aguzzi A, Reme CE (1997) The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat Med 3:346–349

    Article  CAS  PubMed  Google Scholar 

  • Hamm HE, Bownds MD (1986) Protein complement of rod outer segments of frog retina. Biochemistry 25:4512–4523

    Article  CAS  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281(14):9765–9772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007a) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:3125–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007b) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007c) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368:375–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, Grimm C, Reme CE, Lem J (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32:254–260

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth TJ, Gross AK (2012) Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol 293:1–44

    Article  CAS  PubMed  Google Scholar 

  • Huang SP, Brown BM, Craft CM (2010) Visual Arrestin 1 acts as a modulator for N-ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci 30:9381–9391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imamoto Y, Tamura C, Kamikubo H, Kataoka M (2003) Concentration-dependent tetramerization of bovine visual arrestin. Biophys J 85:1186–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JM, Altenbach C, Kono M, Oprian DD, Hubbell WL, Khorana HG (2004) Structural origins of constitutive activation in rhodopsin: role of the K296/E113 salt bridge. Proc Natl Acad Sci USA 101:12508–12513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV (2011) Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 50:2235–2242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R (2000) A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 28:139–152

    Article  CAS  PubMed  Google Scholar 

  • Kuhn H, Wilden U (1982) Assay of phosphorylation of rhodopsin in vitro and in vivo. Methods Enzymol 81:489–496

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Miller WE, Kim KM, Caron MG (2002) beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. J Biol Chem 277:9247–9254

    Article  CAS  PubMed  Google Scholar 

  • Li T, Franson WK, Gordon JW, Berson EL, Dryja TP (1995) Constitutive activation of phototransduction by K296E opsin is not a cause of photoreceptor degeneration. Proc Natl Acad Sci USA 92:3551–3555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Malanson KM, Lem J (2009) Rhodopsin-mediated retinitis pigmentosa. Prog Mol Biol Transl Sci 88:1–31

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, Zaccarini R, Cheetham ME (2010) Pharmacological manipulation of rhodopsin retinitis pigmentosa. Adv Exp Med Biol 664:317–323

    Article  CAS  PubMed  Google Scholar 

  • Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, Baylor DA, Chen J (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153–164

    Article  CAS  PubMed  Google Scholar 

  • Mendez A, Lem J, Simon M, Chen J (2003) Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling. J Neurosci 23:3124–3129

    CAS  PubMed  Google Scholar 

  • Miller JL, Fox DA, Litman BJ (1986) Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Biochemistry 25:4983–4988

    Article  CAS  PubMed  Google Scholar 

  • Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci USA 110:9463–9468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G (1993) X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209

    Article  CAS  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Kennedy MJ, Hurley JB, Gurevich VV, Slepak VZ (2004) Direct binding of visual arrestin to microtubules determines the differential subcellular localization of its splice variants in rod photoreceptors. J Biol Chem 279:41240–41248

    Article  CAS  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamachi Y, Nakamura M, Fujii S, Yamamoto M, Okubo K (1998) Oguchi disease with sectoral retinitis pigmentosa harboring adenine deletion at position 1147 in the arrestin gene. Am J Ophthalmol 125:249–251

    Article  CAS  PubMed  Google Scholar 

  • Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry 29:9746–9752

    Article  CAS  PubMed  Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN Jr, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450–473

    CAS  PubMed  Google Scholar 

  • Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654

    CAS  PubMed  Google Scholar 

  • Papermaster DS (1982) Preparation of retinal rod outer segments. Methods Enzymol 81:48–52

    Article  CAS  PubMed  Google Scholar 

  • Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  CAS  PubMed  Google Scholar 

  • Pugh EN Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141:111–149

    Article  CAS  PubMed  Google Scholar 

  • Pugh EN, Lamb TD (eds) (2000) Phototransduction in vertegrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. Elsevier, Amsterdam

    Google Scholar 

  • Raubach RA, Franklin LK, Dratz EA (1974) A rapid method for the purification of rod outer segment disk membranes. Vision Res 14:335–337

    Article  CAS  PubMed  Google Scholar 

  • Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–725

    Article  CAS  PubMed  Google Scholar 

  • Robinson PR, Buczylko J, Ohguro H, Palczewski K (1994) Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase. Proc Natl Acad Sci USA 91:5411–5415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roca A, Shin KJ, Liu X, Simon MI, Chen J (2004) Comparative analysis of transcriptional profiles between two apoptotic pathways of light-induced retinal degeneration. Neuroscience 129:779–790

    Article  CAS  PubMed  Google Scholar 

  • Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT (2006) Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 4:e262

    Article  PubMed Central  PubMed  Google Scholar 

  • Shi G, Yau KW, Chen J, Kefalov VJ (2007) Signaling properties of a short-wave cone visual pigment and its role in phototransduction. J Neurosci 27:10084–10093

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36:457–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith WC, Milam AH, Dugger D, Arendt A, Hargrave PA, Palczewski K (1994) A splice variant of arrestin. Molecular cloning and localization in bovine retina. J Biol Chem 269:15407–15410

    CAS  PubMed  Google Scholar 

  • Smith WC, Bolch S, Dugger DR, Li J, Esquenazi I, Arendt A, Benzenhafer D, McDowell JH (2011) Interaction of arrestin with enolase1 in photoreceptors. Invest Ophthalmol Vis Sci 52:1832–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359–7369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648

    CAS  PubMed  Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Sung CH, Davenport CM, Nathans J (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J Biol Chem 268:26645–26649

    CAS  PubMed  Google Scholar 

  • Sung CH, Makino C, Baylor D, Nathans J (1994) A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci 14:5818–5833

    CAS  PubMed  Google Scholar 

  • Thompson P, Findlay JB (1984) Phosphorylation of ovine rhodopsin. Identification of the phosphorylated sites. Biochem J 220:773–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282:32075–32083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wald G, Durell J, St George CC (1950) The light reaction in the bleaching of rhodopsin. Science 111:179–181

    Article  CAS  PubMed  Google Scholar 

  • Wenzel A, Grimm C, Marti A, Kueng-Hitz N, Hafezi F, Niemeyer G, Reme CE (2000) c-fos controls the “private pathway” of light-induced apoptosis of retinal photoreceptors. J Neurosci 20:81–88

    CAS  PubMed  Google Scholar 

  • Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Wilden U, Kuhn H (1982) Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21:3014–3022

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV (2006) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364:955–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15:175–178

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wu K, Rife L, Brown B, Craft CM (2005) Rod arrestin expression and function in cone photoreceptors. Invest Ophthalmol Vis Sci 46:1179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, J. (2014). The Physiological Roles of Arrestin-1 in Rod Photoreceptor Cells. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_4

Download citation

Publish with us

Policies and ethics