Skip to main content

Comparison of Exoskeleton Robots and End-Effector Robots on Training Methods and Gait Biomechanics

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Included in the following conference series:

Abstract

Rehabilitation robot positively improves walking ability of patients with gait disorders. Over the last decade, rehabilitation robot devices replaced the training of overground and treadmill. In this paper, our discussion focuses on exoskeleton robot and end-effector robot. The purpose of this study was to compare the training methods, gait Kinematic trajectories and muscle activity patterns on subjects when training on exoskeleton robot and end-effector robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finch, L., Barbeau, H., Arsenault, B.: Influence of body weight support on normal human gait: development to fagaitre training strategy. Physical Therapy 71(11), 842–855 (1991)

    Google Scholar 

  2. Behrman, A.L., Harkema, S.J.: Locomotor training after human spinal cord injury: a series of case studies. Physical Therapy 80(7), 688–700 (2000)

    Google Scholar 

  3. Westlake, K.P., Patten, C.: Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. NeuroEngineering and Rehabilitation  6(18) (June 2009)

    Google Scholar 

  4. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. Rehabilitation Research and Development 37(6), 693–700 (2000)

    Google Scholar 

  5. Fisher, S., Lucas, L., Thrasher, T.A.: Robot-Assisted Gait Training for Patients with Hemiparesis Due to Stroke. Topics in Stroke Rehabilitation 18(3), 269–276 (2011)

    Article  Google Scholar 

  6. van Asseldonk, E.H., Veneman, J.F., Ekkelenkamp, R., Buurke, J.H., van der Helm, F.C., van der Kooij, H.: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 360–370 (2008)

    Article  Google Scholar 

  7. Banala, S., Kulpe, A., Agrawal, S.K.: A Powered Leg Orthosis for Gait Rehabilitation of Motor-Impaired Patients. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4140–4145 (April 2007)

    Google Scholar 

  8. Stefan, H., Andreas, W., Christopher, T.: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. NeuroEngineering and Rehabilitation 7, 30 (2010)

    Article  Google Scholar 

  9. Werner, C., Von Frankenberg, S., Treig, T., Konrad, M., Hesse, S.: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients. A Randomized Crossover Study 33, 2895–2901 (2002)

    Google Scholar 

  10. Yano, H., Kasai, K., Saito, H., Iwata, H.: Sharing Sense of Walking With Locomotion Interfaces. International Journal of Human-Computer Interaction 17(4), 447–462 (2009)

    Article  Google Scholar 

  11. Wirz, M., Zemon, D., Rupp, R., Scheel, A., Colobo, G., Dietz, V., Hornby, T.G.: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch. Phys. Med. Rehabil. 86(4), 672–680 (2005)

    Article  Google Scholar 

  12. Hidler, J., Nichols, D., Pelliccio, M., Brady, K.: Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil. 12(2), 21–33 (2005)

    Article  Google Scholar 

  13. Banala, S., Kim, S., Agrawal, S.K., Scholz, J.P.: Robot Assisted Gait Training with Active Leg Exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 2–8 (2009)

    Article  Google Scholar 

  14. Brütsch, K., Schuler, T., Koenig, A., Zimmerli, L., -Koeneke, S.M., Lünenburger, L., Riener, R., Jäncke, L., Meyer-Heim, A.: Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. Journal of NeuroEngineering and Rehabilitation 7(1), 323–366 (2010)

    Google Scholar 

  15. Adamovich, S.V., Fluet, G.G., Tunik, E., Merians, A.S.: Sensorimotor training in virtual reality: a review. Neuro Rehabilitation 25, 29–44 (2009)

    Google Scholar 

  16. Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126, 866–872 (2003)

    Article  Google Scholar 

  17. Hesse, S., Werner, C.: Connecting research to the needs of patients and clinicians. Brain Research Bulletin 78, 26–34 (2009)

    Article  Google Scholar 

  18. Hidler, J.M., Wall, A.E.: Alterations in muscle activation patterns during robotic-assisted walking. Clin. Biomech. 20, 184–193 (2005)

    Article  Google Scholar 

  19. Adamovich, S.V., Fluet, G.G., Tunik, E., Merians, A.S.: Sensorimotor training in virtual reality: a review. Neuro Rehabilitation 25, 29–44 (2009)

    Google Scholar 

  20. Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126, 866–872 (2003)

    Article  Google Scholar 

  21. Hesse, S., Werner, C.: Connecting research to the needs of patients and clinicians. Brain Research Bulletin 78, 26–34 (2009)

    Article  Google Scholar 

  22. Hidler, J.M., Wall, A.E.: Alterations in muscle activation patterns during robotic-assisted walking. Clin. Biomech. 20, 184–193 (2005)

    Article  Google Scholar 

  23. Hussein, S., Schmidt, H., Volkmar, M., Werner, C., Helmich, I., Piorko, F., Krüger, J., Hesse, S.: Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1961–1964 (2008)

    Google Scholar 

  24. van der Kooij, H., Veneman, J., Ekkelenkamp, R.: Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 189–193 (2006)

    Google Scholar 

  25. Perry, J., Burnfield, J.M.: Gait Analysis:Normal and Pathological Function, 2nd edn. S. Incorporated (2010)

    Google Scholar 

  26. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, PY., Lai, PY. (2013). Comparison of Exoskeleton Robots and End-Effector Robots on Training Methods and Gait Biomechanics. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics