Skip to main content

A Temporal Logic Approach to Modular Design of Synthetic Biological Circuits

  • Conference paper
Computational Methods in Systems Biology (CMSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Included in the following conference series:

Abstract

We present a new approach for the design of a synthetic biological circuit whose behaviour is specified in terms of signal temporal logic (STL) formulae. We first show how to characterise with STL formulae the input/output behaviour of biological modules miming the classical logical gates (AND, NOT, OR). Hence, we provide the regions of the parameter space for which these specifications are satisfied. Given a STL specification of the target circuit to be designed and the networks of its constituent components, we propose a methodology to constrain the behaviour of each module, then identifying the subset of the parameter space in which those constraints are satisfied, providing also a measure of the robustness for the target circuit design. This approach, which leverages recent results on the quantitative semantics of Signal Temporal Logic, is illustrated by synthesising a biological implementation of an half-adder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM (1996)

    Google Scholar 

  2. Bartocci, E., Bortolussi, L., Nenzi, L.: Supplementary material for “A temporal logic approach to modular design of synthetic biological circuits”. CoRR (2013), http://arxiv.org/abs/1306.4493v1

  3. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)

    Article  Google Scholar 

  4. Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J., Bhatia, S., Davidsohn, N., Haddock, T., Loyall, J., Schantz, R., Vasilev, V., Yaman, F.: An End-to-End Workflow for Engineering of Biological Networks from High-Level Specifications. ACS Synth. Biol. 1(8), 317–331 (2012)

    Article  Google Scholar 

  5. Belta, C., Habets, L.C.G.J.M.: Controlling a class of nonlinear systems on rectangles. IEEE Trans. of Automatic Control 51(11), 1749–1759 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, B.S., Hsu, C.Y., Liou, J.J.: Robust design of biological circuits: evolutionary systems biology approach. J. Biomed. Biotechnol. 2011, 304236 (2011)

    Google Scholar 

  7. Dasika, M.S., Maranas, C.D.: OptCircuit: an optimization based method for computational design of genetic circuits. BMC Syst. Biol. 2, 24 (2008)

    Article  Google Scholar 

  8. Densmore, D., Anderson, J.C.: Combinational logic design in synthetic biology. In: IEEE International Symposium on Circuits and Systems, ISCAS 2009., pp. 301–304 (2009)

    Google Scholar 

  9. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Donzé, A., Clermont, G., Langmead, C.J.: Parameter synthesis in nonlinear dynamical systems: Application to systems biology. Journal of Computational Biology 17(3), 325–336 (2010)

    Article  MathSciNet  Google Scholar 

  11. Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS One 6(9), e24246 (2011)

    Article  Google Scholar 

  12. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Francois, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. PNAS 101(2), 580–585 (2004)

    Article  Google Scholar 

  15. Fu, P., Panke, S.: Systems Biology and Synthetic Biology. John Wiley & Sons (2009)

    Google Scholar 

  16. Jones, K.D., Konrad, V., Nickovic, D.: Analog property checkers: A ddr2 case study. Formal Methods in System Design 36(2), 114–130 (2010)

    Article  MATH  Google Scholar 

  17. De Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  18. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. American Institute of Electrical Engineers 72(2) (1953)

    Google Scholar 

  19. Knight, T.: Idempotent vector design for standard assembly of biobricks. Technical Report MIT Synthetic Biology Working Group. MIT (2003)

    Google Scholar 

  20. Madec, M., Lallement, C., Gendrault, Y., Haiech, J.: Design methodology for synthetic biosystems. In: Proc. of MIXDES, pp. 621–626 (2010)

    Google Scholar 

  21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7(2), e1001083 (2011)

    Article  Google Scholar 

  23. Myers, C.J.: Engineering Genetic Circuits. Chapman & Hall/CRC (2009)

    Google Scholar 

  24. Pnueli, A.: The temporal logic of programs. In: IEEE Annual Symposium on Foundations of Computer Science, pp. 46–57 (1977)

    Google Scholar 

  25. Rodrigo, G., Jaramillo, A.: AutoBioCAD: Full Biodesign Automation of Genetic Circuits. ACS Synth. Biol. (November 2012)

    Google Scholar 

  26. Salah, R.B., Bozga, M., Maler, O.: On timing analysis of combinational circuits. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 204–219. Springer, Heidelberg (2004)

    Google Scholar 

  27. Smith, H.L.: Systems of odes which generate an order preserving flow. A survey of results. SIAM Review 30(1), 87–113 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szallasi, Z., Stelling, J., Periwal, V.: System Modelling in Cellular Biology: from concepts to nuts and bolts. The Mit Press (2006)

    Google Scholar 

  29. Terzer, M., Jovanovic, M., Choutko, A., Nikolayeva, O., Korn, A., Brockhoff, D., Zurcher, F., Friedmann, M., Schutz, R., Zitzler, E., Stelling, J., Panke, S.: Design of a biological half adder. IET Synthetic Biology 1(1-2), 53–58 (2007)

    Article  Google Scholar 

  30. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (1992)

    Google Scholar 

  31. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature (2000)

    Google Scholar 

  32. Voy, B.H., Scharff, J.A., Perkins, A.D., Saxton, A.M., Borate, B., Chesler, E.J., Branstetter, L.K., Langston, M.A.: Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Comput. Biol. (2006)

    Google Scholar 

  33. Yaman, F., Bhatia, S., Adler, A., Densmore, D., Beal, J.: Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synth. Biol. 1(8), 332–344 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartocci, E., Bortolussi, L., Nenzi, L. (2013). A Temporal Logic Approach to Modular Design of Synthetic Biological Circuits. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics