Skip to main content

Towards Extraction of Topological Maps from 2D and 3D Occupancy Grids

  • Conference paper
Progress in Artificial Intelligence (EPIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8154))

Included in the following conference series:

Abstract

Cooperation with humans is a requirement for the next generation of robots so it is necessary to model how robots can sense, know, share and acquire knowledge from human interaction. Instead of traditional SLAM (Simultaneous Localization and Mapping) methods, which do not interpret sensor information other than at the geometric level, these capabilities require an environment map representation similar to the human representation. Topological maps are one option to translate these geometric maps into a more abstract representation of the the world and to make the robot knowledge closer to the human perception. In this paper is presented a novel approach to translate 3D grid map into a topological map. This approach was optimized to obtain similar results to those obtained when the task is performed by a human. Also, a novel feature of this approach is the augmentation of topological map with features such as walls and doors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1-2), 3–55 (1999)

    Article  MATH  Google Scholar 

  2. Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., Tomatis, N.: Robox at Expo.02: A large-scale installation of personal robots. Robotics and Autonomous Systems 42(3-4), 203–222 (2003)

    Article  MATH  Google Scholar 

  3. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D.: Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva. Journal of Robotics Research, 972–999 (2000)

    Google Scholar 

  4. Pinto, M., Moreira, A.P., Matos, A., Santos, F.: Fast 3D Matching Localisation Algorithm. Journal of Automation and Control Engineering 1(2), 110–115 (2013) ISSN:2301–3702

    Google Scholar 

  5. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robotics & Automation Magazine 13(3), 108–117 (2006)

    Article  Google Scholar 

  6. Thorpe, C.: Simultaneous localization and mapping with detection and tracking of moving objects. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp. 2918–2924. IEEE (2002)

    Google Scholar 

  7. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In: Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE (2011)

    Google Scholar 

  8. Montemerlo, M., Thrun, S.: The FastSLAM Algortihm for Simultaneous Localization and Mapping. Springer Tracts in Advanced Robotics (2007)

    Google Scholar 

  9. Santos, F.: HySeLAM - Hybrid Semantic Localization and Mapping (2012), http://hyselam.fbnsantos.com (accessed: May 20, 2013)

  10. Elfes, A.: Occupancy grids: a probabilistic framework for robot perception and navigation. Phd, Carnegie Mellon University (1989)

    Google Scholar 

  11. Chatila, R., Laumond, J.: Position referencing and consistent world modeling for mobile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 138–145. Institute of Electrical and Electronics Engineers (1985)

    Google Scholar 

  12. Mataric, M.J.: A Distributed Model for Mobile Robot Environment-Learning and Navigation, Msc. MIT (1990)

    Google Scholar 

  13. Kuipers, B., Byun, Y.T.: A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  14. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  15. Joo, K., Lee, T.K., Baek, S., Oh, S.Y.: Generating topological map from occupancy grid-map using virtual door detection. In: IEEE Congress on Evolutionary Computation, pp. 1–6. IEEE (July 2010)

    Google Scholar 

  16. Fabrizi, E., Saffiotti, A.: Extracting topology-based maps from gridmaps. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, ICRA. Millennium Conference Symposia Proceedings (Cat. No.00CH37065), vol. 3, pp. 2972–2978. IEEE (2000)

    Google Scholar 

  17. Myung, H., Jeon, H.-M., Jeong, W.-Y., Bang, S.-W.: Virtual door-based coverage path planning for mobile robot. In: Kim, J.-H., et al. (eds.) FIRA 2009. LNCS, vol. 5744, pp. 197–207. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Lau, B., Sprunk, C., Burgard, W.: Improved Updating of Euclidean Distance Maps and Voronoi Diagrams. In: IEEE International Conference on Intelligent RObots and Systems (IROS), Taipei, Taiwan (2010)

    Google Scholar 

  19. Brunskill, E., Kollar, T., Roy, N.: Topological Mapping Using Spec-tral Clustering and Classification. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3491–3496 (2007)

    Google Scholar 

  20. Zivkovic, Z., Bakker, B., Krose, B.: Hierarchical Map Building and Planning based on Graph Partitioning. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 803–809 (2006)

    Google Scholar 

  21. Buschka, P., Saffiotti, A.: A Virtual Sensor for Room Detection. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 637–642 (2002)

    Google Scholar 

  22. Choi, J., Choi, M., Chung, W.K.: Incremental topological modeling using sonar gridmap in home environment. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3582–3587. IEEE (October 2009)

    Google Scholar 

  23. Kortenkamp, D.: TRACLabs in new facility (2012), http://traclabs.com/2011/03/traclabs-in-new-facility/ (accessed: May 20, 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos, F.N., Moreira, A.P., Costa, P.C. (2013). Towards Extraction of Topological Maps from 2D and 3D Occupancy Grids. In: Correia, L., Reis, L.P., Cascalho, J. (eds) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science(), vol 8154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40669-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40669-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40668-3

  • Online ISBN: 978-3-642-40669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics