Skip to main content

The Biosynthesis of Phenazines

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

The phenazines are nitrogen-containing colored aromatic secondary metabolites that many bacterial species produce and excrete into the environment, sometimes in such large quantities that they are visible to the naked eye. Phenazines act as broad-specificity antibiotics and as virulence as well as survival factors in infectious disease, which is in general a consequence of their redox activity. This chapter gives a historical perspective of research that led to our current understanding of phenazine biosynthesis, starting with the isolation of the first phenazine derivative pyocyanin in 1859. The focus is on recent biochemical and structural studies of the enzymes PhzE, PhzD, PhzF, PhzB, and PhzG, which convert chorismic acid via 2-amino-2-desoxyisochorismic acid (ADIC), trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA), 6-amino-5-oxocyclohex-2-ene-1-carboxylic acid (AOCHC), hexahydro-phenazine-1,6-dicarboxylate (HHPDC), and tetrahydro-phenazine-1-carboxylate (THPCA) to phenazine-1,6-dicarboxylic acid (PDC) and phenazine-1-carboxylic acid (PCA). PDC and PCA then act as “core” phenazines that strain-specific enzymes convert to the over 150 phenazine derivatives that have been isolated from natural sources until today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abken HJ, Tietze M, Brodersen J et al (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gol. J Bacteriol 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Ahuja EG, Janning P, Mentel M et al (2008) PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. J Am Chem Soc 130:17053–17061. doi:10.1021/ja806325k

    Article  PubMed  CAS  Google Scholar 

  • Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506

    Article  PubMed  CAS  Google Scholar 

  • Bera AK, Atanasova V, Gamage S et al (2010) Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes. Acta Crystallogr D Biol Crystallogr 66:664–672. doi:10.1107/S0907444910008425

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Blankenfeldt W, Kuzin AP, Skarina T et al (2004) Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc Natl Acad Sci USA 101:16431–16436. doi:10.1073/pnas.0407371101

    Article  PubMed  CAS  Google Scholar 

  • Calhoun DH, Carson M, Jensen RA (1972) The branch point metabolite for pyocyanine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol 72:581–583

    Article  PubMed  CAS  Google Scholar 

  • Chang PC, Blackwood AC (1968) Simultaneous biosynthesis of pyocyanine, phenazine-1-carboxylic acid, and oxychloroaphine from labelled substrates by Pseudomonas aeruginosa Mac 436. Can J Biochem 46:925–929

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Hu H, Wang W et al (2008) Metabolic degradation of phenazine-1-carboxylic acid by the strain Sphingomonas sp. DP58: the identification of two metabolites. Biodegradation 19:659–667. doi:10.1007/s10532-007-9171-1

    Article  PubMed  CAS  Google Scholar 

  • Cirilli M, Zheng R, Scapin G et al (1998) Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase. Biochemistry 37:16452–16458. doi:10.1021/bi982138o

    Article  PubMed  CAS  Google Scholar 

  • Culbertson JE, Toney MD (2012) Expression and characterization of PhzE from P. aeruginosa PAO1: aminodeoxyisochorismate synthase involved in pyocyanin and phenazine-1-carboxylate production. Biochim Biophys Acta 1834:240–246. doi:10.1016/j.bbapap.2012.10.010

    Article  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    PubMed  CAS  Google Scholar 

  • Dietrich LE, Teal TK, Price-Whelan A et al (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206. doi:10.1126/science.1160619

    Article  PubMed  CAS  Google Scholar 

  • Elema B (1931) Oxidation-reduction of pyocyanine. II. Reduction-oxidation potentials of pyocyanine. Recl Trav Chim Pay B 50:807–826

    Article  CAS  Google Scholar 

  • Essar DW, Eberly L, Hadero A et al (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas-aeruginosa: interchangeability of the 2 anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    PubMed  CAS  Google Scholar 

  • Farrow JM, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189:3425–3433. doi:10.1128/Jb.00209-07

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA (2009) Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 68:171–185. doi:10.1007/s00239-009-9198-5

    Article  PubMed  CAS  Google Scholar 

  • Fordos MJ (1859) Recherches sur la matière colorante des suppurations bleues: pyocyanine. Rec Trav Soc d’Émul Sci Pharm 3:30

    Google Scholar 

  • Fordos MJ (1860) Recherches sur la matière colorante des suppurations blue: pyocyanine. C R Hebd Seances Acad Sci 51:215–217

    Google Scholar 

  • Fordos MJ (1863) Recherches sur les matières colorantes des suppurations bleues, pyocyanine et pyoxanthose. C R Hebd Seances Acad Sci 56:1128–1131

    Google Scholar 

  • Friedheim E, Michaelis L (1931) Potentiometric study of pyocyanine. J Biol Chem 91:355–368

    CAS  Google Scholar 

  • Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2,500 years. Angew Chem Int Ed Engl 42:3582–3603. doi:10.1002/anie.200300582

    Article  PubMed  Google Scholar 

  • Gessard MC (1882) Sur les colorations bleue et verte des linges à pansement. C R Hebd Seances Acad Sci 94:536–538

    Google Scholar 

  • Giddens SR, Feng Y, Mahanty HK (2002) Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol Microbiol 45:769–783

    Article  PubMed  CAS  Google Scholar 

  • Greenhagen BT, Shi K, Robinson H et al (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47:5281–5289. doi:10.1021/bi702480t

    Article  PubMed  CAS  Google Scholar 

  • Haagen Y, Gluck K, Fay K et al (2006) A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 7:2016–2027

    Article  PubMed  CAS  Google Scholar 

  • Herbert RB, Holliman FG, Sheridan JB (1976) Biosynthesis of microbial phenazines: incorporation of shikimic acid. Tetrahedron Lett 17:639–642

    Article  Google Scholar 

  • Herbert RB, Holliman FG, Ibberson PN et al (1979) Biosynthesis of phenazines: incorporation of [14C]shikimic acid. J Chem Soc Perk T 1:2411–2415

    Article  Google Scholar 

  • Hillemann H (1938) Position of the methyl groups in pyocyanine and attempts to synthesize isopyocyanine. Ber Dtsch Chem Ges B 71:46–52

    Article  Google Scholar 

  • Ho Sui SJ, Lo R, Fernandes AR et al (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents. doi:10.1016/j.ijantimicag.2012.05.009

    PubMed  Google Scholar 

  • Hollstein U, Marshall LG (1972) Biosynthesis of phenazines. J Org Chem 37:3510–3514

    Article  PubMed  CAS  Google Scholar 

  • Hollstein U, McCamey DA (1973) Biosynthesis of phenazines. II. Incorporation of (6-14C)-D-shikimic acid into phenazine-1-carboxylic acid and iodinin. J Org Chem 38:3415–3417

    Article  PubMed  CAS  Google Scholar 

  • Hollstein U, Mock DL, Sibbitt RR et al (1978) Incorporation of shikimic acid into iodinin. Tetrahedron Lett 19:2987–2990

    Article  Google Scholar 

  • Ingledew WM, Campbell JJ (1969) Evaluation of shikimic acid as a precursor of pyocyanine. Can J Microbiol 15:535–541

    Article  PubMed  CAS  Google Scholar 

  • Jensen KA, Holten CH (1949) The dipole moment of pyocyanine. Acta Chem Scand 3:1446–1447

    Article  CAS  Google Scholar 

  • Jordan EO (1899) Bacillus pyocyaneus and its pigments. J Exp Med 4:627–647

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Kuhn R, Schön K (1935) Pyocyaninium-perchlorat. Ber Dtsch Chem Ges 68:1537–1539. doi:10.1002/cber.19350680824

    Article  Google Scholar 

  • Lapota D, Galt C, Losee J et al (1988) Observations and measurements of planktonic bioluminescence in and around a milky sea. J Exp Mar Bio Ecol 119:55–81. doi:10.1016/0022-0981(88)90152-9

    Article  Google Scholar 

  • Lau GW, Hassett DJ, Ran H et al (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

    Article  PubMed  CAS  Google Scholar 

  • Ledderhose G (1888) Ueber den blauen Eiter. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 28:201–230

    Google Scholar 

  • Levitch ME, Rietz P (1966) Isolation and characterization of 2-hydroxyphenazine from Pseudomonas aureofaciens. Biochemistry 5:689–692

    Article  PubMed  CAS  Google Scholar 

  • Levitch ME, Stadtman ER (1964) Study of biosynthesis of phenazine-1-carboxylic acid. Arch Biochem Biophys 106:194–199

    Article  PubMed  CAS  Google Scholar 

  • Li Q-A, Mavrodi DV, Thomashow LS et al (2011) Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J Biol Chem 286:18213–18221. doi:10.1074/jbc.M110.183418

    Article  PubMed  CAS  Google Scholar 

  • Longley RP, Halliwell JE, Campbell JJ et al (1972) The branchpoint of pyocyanine biosynthesis. Can J Microbiol 18:1357–1363

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Shen X, Hu H et al (2012) Genome sequence of Sphingomonas wittichii DP58, the first reported phenazine-1-carboxylic acid-degrading strain. J Bacteriol 194:3535–3536. doi:10.1128/JB.00330-12

    Article  PubMed  Google Scholar 

  • Martin NH, Murphy SC, Ralyea RD et al (2011) When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. J Dairy Sci 94:3176–3183. doi:10.3168/jds.2011-4312

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsall RF et al (1998) A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM et al (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879. doi:10.1128/AEM.02009-09

    Article  PubMed  CAS  Google Scholar 

  • McCombie H, Scarborough HA (1923) Chemical constitution of bacterial pigments. I. Isolation of pyocyanine and the preparation of its salts. J Chem Soc 123:3279–3285

    Article  CAS  Google Scholar 

  • McDonald M, Mavrodi DV, Thomashow LS et al (2001) Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc 123:9459–9460

    Article  PubMed  CAS  Google Scholar 

  • Migula W (1900) Pseudomonas aeruginosa (Schröter) Mig. System der Bakterien. Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bakterien. Gustav Fischer, Jena, pp 884–885

    Google Scholar 

  • Millican RC (1962) Biosynthesis of pyocyanine-incorporation of [14c]shikimic acid. Biochim Biophys Acta 57:407

    Google Scholar 

  • Parsons JF, Calabrese K, Eisenstein E et al (2003) Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42:5684–5693

    Article  PubMed  CAS  Google Scholar 

  • Parsons JF, Calabrese K, Eisenstein E et al (2004a) Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr D Biol Crystallogr 60:2110–2113. doi:10.1107/S0907444904022474

    Article  PubMed  Google Scholar 

  • Parsons JF, Song F, Parsons L et al (2004b) Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43:12427–12435

    Article  PubMed  CAS  Google Scholar 

  • Parsons JF, Greenhagen BT, Shi K et al (2007) Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46:1821–1828

    Article  PubMed  CAS  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5:330–339

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Gaffney T, Lam S et al (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 134:299–307

    PubMed  CAS  Google Scholar 

  • Podojil M, Gerber NN (1967) The biosynthesis of 1,6-phenazinediol 5,10-dioxide (Iodinin) by Brevibacterium iodinum. Biochemistry 6:2701–2705

    Article  PubMed  CAS  Google Scholar 

  • Podojil M, Gerber NN (1970) Biosynthesis of 1,6-phenazinediol 5,10-dioxide (iodinin). Incorporation shikimic acid. Biochemistry 9:4616–4618

    Article  PubMed  CAS  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    Article  PubMed  CAS  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381

    Article  PubMed  CAS  Google Scholar 

  • Recinos DA, Sekedat MD, Hernandez A et al (2012) Redundant phenazine operons in exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci USA 109:19420–19425. doi:10.1073/pnas.1213901109

    Article  PubMed  CAS  Google Scholar 

  • Roemer A, Herbert RB (1982) Further observations on the source of nitrogen in phenazine biosynthesis. Z Naturforsch B 37C:1070–1074

    CAS  Google Scholar 

  • Rui Z, Ye M, Wang S et al (2012) Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster. Chem Biol 19:1116–1125. doi:10.1016/j.chembiol.2012.07.025

    Article  PubMed  CAS  Google Scholar 

  • Saleh O, Gust B, Boll B et al (2009) Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus. J Biol Chem 284:14439–14447. doi:10.1074/jbc.M901312200

    Article  PubMed  CAS  Google Scholar 

  • Saleh O, Flinspach K, Westrich L et al (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8:501–513. doi:10.3762/bjoc.8.57

    Article  PubMed  CAS  Google Scholar 

  • Schroeter J (1872) Ueber einige durch Bacterien gebildete Pigmente. In: Cohn F (ed) Beiträge zur Biologie der Pflanzen, pp 109–126

    Google Scholar 

  • Seeger K, Flinspach K, Haug-Schifferdecker E et al (2011) The biosynthetic genes for prenylated phenazines are located at two different chromosomal loci of Streptomyces cinnamonensis DSM 1042. Microb Biotechnol 4:252–262. doi:10.1111/j.1751-7915.2010.00234.x

    Article  PubMed  CAS  Google Scholar 

  • Seiler H (2006) Blaue Milch—Gibt es die wirklich? Dtsch Molk Ztg 2006(12):25–27

    Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Ecol 27:211–275

    CAS  Google Scholar 

  • Webby CJ, Baker HM, Lott JS et al (2005) The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. J Mol Biol 354:927–939

    Article  PubMed  CAS  Google Scholar 

  • Wrede F, Strack E (1924a) Über das Pyocyanin, den blauen Farbstoff des Bacillus pycyaneus I. H-S Z Physiol Chem 140:1–15

    Article  CAS  Google Scholar 

  • Wrede F, Strack E (1924b) Über das Pyocyanin, den blauen Farbstoff des Bacillus pyocyaneus II. H-S Z Physiol Chem 142:103–119

    Article  Google Scholar 

  • Wrede F, Strack E (1929) Über das Pyocyanin, den blauen Farbstoff des Bacillus pyocyaneus. IV. Die Konstitution und Synthese des Pyocyanins. H-S Z Physiol Chem 181:58–76

    Article  CAS  Google Scholar 

  • Xu N, Blankenfeldt W. (2013) Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis. Acta Crystallogr D Biol Crystallogr. 69(Pt 8):1403–1413

    Google Scholar 

  • Yang Z-J, Wang W, Jin Y et al (2007) Isolation, identification, and degradation characteristics of phenazine-1-carboxylic acid-degrading strain Sphingomonas sp. DP58. Curr Microbiol 55:284–287. doi:10.1007/s00284-006-0522-7

    Article  PubMed  CAS  Google Scholar 

  • Zocher G, Saleh O, Heim JB et al (2012) Structure-based engineering increased the catalytic turnover rate of a novel phenazine prenyltransferase. PLoS ONE 7:e48427. doi:10.1371/journal.pone.0048427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to his coworkers and collaborators for their hard work aimed at unraveling the phenazine biosynthesis pathway. Roger S. Goody is acknowledged for his support while the author’s research group was located at the Max Planck Institute of Molecular Physiology in Dortmund (Germany). The European Synchrotron Radiation Facility (ESRF Grenoble, France), the Swiss Light Source (SLS Villigen, Switzerland), and the Deutsches Elektronensynchrotron (DESY Hamburg, Germany) provided generous access to their facilities. Research in WBs laboratory is supported by the Deutsche Forschungsgemeinschaft (Grants BL 587/1-1/2 and BL 587/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulf Blankenfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blankenfeldt, W. (2013). The Biosynthesis of Phenazines. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_1

Download citation

Publish with us

Policies and ethics