Skip to main content

Abstract

This chapter focuses on two classic Krebs cycle disorders (2-oxoglutaric aciduria and fumarase deficiency) and two recently discovered disorders of the Krebs cycle, severely affecting mitochondrial function and mitochondrial maintenance (succinyl-CoA synthetase –SCS – deficiencies, characterized by mutations in SUCLA2 and SUCLG1 genes). Fumarase deficiency and 2-oxoglutaric aciduria are rare disorders with global developmental delay and severe neurologic problems in infants. Patients with oxoglutaric aciduria have a variable severity of neurological involvement and metabolic acidosis and develop severe microcephaly and mental retardation. A special form (DOOR syndrome) occurs with sensorineural deafness and osteodystrophy. Patients with fumarase deficiency present with either a fulminant course associated with fatal outcome within the first 2 years of life or a subacute encephalopathy with profound speech delay without metabolic crises. SUCLA2 and SUCLG1 defects have the clinical presentation of mitochondrial depletion syndromes with profound hypotonia, progressive dystonia, and muscular atrophy, in addition to severe sensorineural hearing impairment, which has been specifically associated with SUCLA2 defect. The most important clues for the diagnosis in all these disorders rely in urine organic analysis. 2-oxoglutaric aciduria leads to chronic metabolic acidosis and variable urinary excretion of 2-oxoglutarate, while fumarase deficiency occurs with an increased excretion of fumarate associated with succinate and lactate excretion with eventual 2-oxoglutaric aciduria. A normal excretion of fumaric acid and a relative high fumarase residual activity do not rule out fumarase deficiency. In questionable cases mutation analysis is needed to confirm the diagnosis. In SCS defects mild methylmalonic aciduria with abnormal urine carnitine-ester profile is associated with only subtle abnormalities of the Krebs cycle intermediates. Due to the recognizable pattern of dystonia/±deafness syndrome and mild methylmalonic aciduria in SCS defects, direct genetic testing is a possible approach in the diagnosis of SUCLA2 and SUCLG1 defects. Carrier screening in fumarase deficiency is important due to the possible increased risk for certain malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allegri G, Fernandes MJ, Scalco FB et al (2010) Fumaric aciduria: an overview and the first Brazilian case report. J Inherit Metab Dis 33:411–419

    Article  PubMed  Google Scholar 

  • Bonnefont JP, Chretien D, Rustin P et al (1992) Alpha-ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J Pediatr 121:255–258

    Article  CAS  PubMed  Google Scholar 

  • Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874

    Article  PubMed  Google Scholar 

  • Coughlin EM, Christensen E, Kunz PL et al (1998) Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 63:254–262

    Article  CAS  PubMed  Google Scholar 

  • De Meirleir L, Hansikova H, Zeman J et al (2006) Fumarate hydratase deficiency – a rare cause of development delay and seizures. J Inherit Metab Dis 29:106–108

    Article  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142:104–112

    Article  Google Scholar 

  • Elpeleg O, Miller C, Hershkovitz E et al (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76:1081–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guffon N, Lopez-Mediavilla C, Dumoulin R et al (1993) 2-ketoglutarate dehydrogenase deficiency, a rare cause of primary hyperlactataemia: report of a new case. J Inherit Metab Dis 16:821–830

    Article  CAS  PubMed  Google Scholar 

  • Johnson JD, Muhonen WW, Lambeth DO (1998) Characterization of the ATP- and GTP-specific succinyl-CoA synthetases in pigeon. The enzymes incorporate the same alpha-subunit. J Biol Chem 273:27573–27579

    Article  CAS  PubMed  Google Scholar 

  • Kadrmas EF, Ray PD, Lambeth DO (1991) Apparent ATP-linked succinate thiokinase activity and its relation to nucleoside diphosphate kinase in mitochondrial matrix preparations from rabbit. Biochim Biophys Acta 1074:339–346

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh-Black A, Connolly DM, Chugani SA, Chakrabarty AM (1994) Characterization of nucleoside-diphosphate kinase from Pseudomonas aeruginosa: complex formation with succinyl-CoA synthetase. Proc Natl Acad Sci U S A 91:5883–5887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlschutter A, Behbehani A, Langenbeck U et al (1982) A familial progressive neurodegenerative disease with 2-oxoglutaric aciduria. Europ J Pediatr 138:32–37

    Article  CAS  Google Scholar 

  • Kowluru A, Tannous M, Chen HQ (2002) Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch Biochem Biophys 398:160–169

    Article  CAS  PubMed  Google Scholar 

  • Manning NJ, Olpin SE, Pollitt RJ et al (2000) Fumarate hydratase deficiency: increased fumaric acid in amniotic fluid of two affected pregnancies. J Inherit Metab Dis 23:757–759

    Article  CAS  PubMed  Google Scholar 

  • Maradin M, Fumić K, Hansikova H et al (2006) Fumaric aciduria: mild phenotype in a 8-year-old girl with novel mutations. J Inherit Metab Dis 29:683

    Article  CAS  PubMed  Google Scholar 

  • Morava E, Steuerwald U, Carrozzo R et al (2009) Dystonia and deafness due to SUCLA2 defect; Clinical course and biochemical markers in 16 children. Mitochondrion. doi:10.1016/j.mito.2009.08.003

    PubMed  Google Scholar 

  • Ostergaard E, Hansen FJ, Sorensen N et al (2007a) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861

    Article  PubMed  Google Scholar 

  • Ostergaard E, Christensen E, Kristensen E et al (2007b) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81:383–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostergaard E, Schwartz M, Batbayli M et al (2009) A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria. Eur J Pediatr. doi:10.1007/s00431-009-1007-z

    PubMed  Google Scholar 

  • Ottolenghi C, Hubert L, Allanore Y et al (2011) Clinical and biochemical heterogeneity associated with fumarase deficiency. Hum Mutat. doi:10.1002/humu.21534

    PubMed  Google Scholar 

  • Picaud S, Kavanagh KL, Yue WW et al (2011) Structural basis of fumarate hydratase deficiency. J Inherit Metab Dis 34:671–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouzier C, Le Guédard-Méreuze S, Fragaki K et al (2010) The severity of phenotype linked to SUCLG1 mutations could be correlated with residual amount of SUCLG1 protein. J Med Genet 47(10):670–676. doi:10.1136/jmg.2009.073445

  • Surendran S, Michals-Matalon K, Krywawych S (2002) DOOR syndrome: deficiency of E1 component of the 2-oxoglutarate dehydrogenase complex. Am J Med Genet. 15;113(4):371–374

    Google Scholar 

  • Tomlinson IP, Alam NA, Rowan AJ (2000) Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Google Scholar 

  • Trinh BC, Melhem ER, Barker PB (2001) Multi-slice proton MR spectroscopy and diffusion weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. Am J Neuroradiol 22:831–833

    CAS  PubMed  Google Scholar 

  • Zeman J, Krijt J, Stratilová L et al (2000) Abnormalities in succinylpurines in fumarase deficiency: possible role in pathogenesis of CNS impairment. J Inherit Metab Dis 23:371–374

    Article  CAS  PubMed  Google Scholar 

  • Zinn AB, Kerr DS, Hoppel CL (1986) Fumarase deficiency: a new cause of mitochondrial encephalomyopathy. N Engl J Med 315:469–475

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Morava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morava, E., Carrozzo, R. (2014). Disorders of the Krebs Cycle. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics