Skip to main content

Abstract

Locally testable codes (LTCs) are error-correcting codes for which membership in the code can be tested by probing few symbols of a purported codeword. Motivated by applications in cryptography, we initiate the study of zero knowledge locally testable codes (ZK-LTCs). ZK-LTCs are LTCs which admit a randomized encoding function, such that even a malicious tester which reads a large number of codeword symbols learns essentially nothing about the encoded message.

We obtain ZK-LTCs with good parameters by applying general transformations to standard LTCs. We also obtain LTCs and ZK-LTCs which are stable in the sense that they limit the influence of adaptively corrupted symbols on the output of the testing procedure.

Finally, we apply stable ZK-LTCs for obtaining protocols for verifiable secret sharing (VSS) in which the communication complexity required for verifying a shared secret is sublinear in the secrecy threshold. We also obtain the first statistically secure VSS protocols and distributed coin-flipping protocols which use n servers, tolerate a constant fraction of corrupted servers, and have error that vanishes almost exponentially with n using only O(n) bits of communication. These improve over previous VSS and coin-flipping protocols from the literature, which require nearly quadratic communication to achieve similar guarantees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S.: Verifiable secret sharing in a total of three rounds. Inf. Process. Lett. 112(22), 856–859 (2012)

    Article  MATH  Google Scholar 

  2. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking Computations in Polylogarithmic Time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC), New Orleans, Louisiana, USA, May 5-8, pp. 21–31. ACM (1991)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)

    Google Scholar 

  4. Ben-Or, M., Rabin, T.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), Seattle, Washigton, USA, May 14-17, pp. 73–85. ACM (1989)

    Google Scholar 

  5. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing 36(4), 889–974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF Properties Are Hard to Test. SIAM Journal on Computing 35(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes. Random Struct. Algorithms 28(4), 387–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Sasson, E., Viderman, M.: Composition of Semi-LTCs by Two-Wise Tensor Products. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 378–391. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Ben-Sasson, E., Viderman, M.: Tensor Products of Weakly Smooth Codes are Robust. Theory of Computing 5(1), 239–255 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

    Google Scholar 

  11. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp. 383–395 (1985)

    Google Scholar 

  12. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC, pp. 364–369 (1986)

    Google Scholar 

  13. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3), 12:1–12:44 (2007)

    Google Scholar 

  15. Dinur, I., Sudan, M., Wigderson, A.: Robust Local Testability of Tensor Products of LDPC Codes. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX and RANDOM 2006. LNCS, vol. 4110, pp. 304–315. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Fehr, S., Maurer, U.M.: Linear VSS and distributed commitments based on secret sharing and pairwise checks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 565–580. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Feldman, J., Malkin, T., Servedio, R.A., Stein, C.: Secure network coding via filtered secret sharing. In: Proceedings of the 42nd Annual Allerton Conference on Communication, Control, and Computing (2004)

    Google Scholar 

  18. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp. 427–437. IEEE Computer Society (1987)

    Google Scholar 

  19. Fitzi, M., Garay, J.A., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-optimal and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)

    Google Scholar 

  21. Goldreich, O.: Short Locally Testable Codes and Proofs (Survey). Electronic Colloquium on Computational Complexity (ECCC) (014) (2005)

    Google Scholar 

  22. Goldreich, O.: Three XOR-lemmas — an exposition. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp. 248–272. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. Journal of the ACM 53(4), 558–655 (2006)

    Article  MathSciNet  Google Scholar 

  24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In: FOCS, pp. 261–270 (2009)

    Google Scholar 

  25. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero knowledge. In: STOC, pp. 496–505 (1997)

    Google Scholar 

  27. Kumaresan, R., Patra, A., Pandu Rangan, C.: The round complexity of verifiable secret sharing: The statistical case. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 431–447. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Meir, O.: Combinatorial Construction of Locally Testable Codes. SIAM J. Comput. 39(2), 491–544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The round complexity of verifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Peng, K.: Efficient VSS free of computational assumption. J. Parallel Distrib. Comput. 71(12), 1592–1597 (2011)

    Article  MATH  Google Scholar 

  31. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory 42(6), 1723–1731 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trevisan, L.: Some Applications of Coding Theory in Computational Complexity (September 23, 2004)

    Google Scholar 

  33. Vazirani, U.V.: Randomness, adversaries and computation. Ph.D. Thesis, EECS, UC Berkeley

    Google Scholar 

  34. Viderman, M.: A combination of testability and decodability by tensor products. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 651–662. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishai, Y., Sahai, A., Viderman, M., Weiss, M. (2013). Zero Knowledge LTCs and Their Applications. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics