Skip to main content

Weyl Curvature Hypothesis in Terms of Spacetime Thermodynamics

  • Conference paper
  • First Online:
Progress in Mathematical Relativity, Gravitation and Cosmology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 60))

Abstract

We formulate Penrose’s Weyl curvature hypothesis from an aspect of spacetime thermodynamics, which has been proposed by Jacobson. Using the evolution equation for the shear tensor of a null congruence in a local Rindler frame, we show that the entropy variation can be expressed in terms of the Weyl curvature. This result supports Penrose’s hypothesis, which claims that entropy of the gravitational field is somehow linked to the Weyl curvature. We point out that Penrose’s hypothesis corresponds to Clausius’ relation for a quasi-equilibrium state in spacetime thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Phys. Rep. 367, 1 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. G. Tsagas, A. Challinor and R. Maartens, Phys. Rep. 465, 61 (2008).

    Article  MathSciNet  Google Scholar 

  3. R. Penrose, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979), p. 581.

    Google Scholar 

  4. R. Penrose, J. Stat. Phys. 77, 217 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ø. Grøn and S. Hervik, arXiv:gr-qc/0205026.

    Google Scholar 

  6. J. D. Barrow and S. Hervik, Class. Quantum Grav. 19, 5173 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. C. Mena and P. Tod, Class. Quantum Grav. 24, 1733 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ø. Rudjord, Ø. Grøn and S. Hervik, Phys. Scr. 77, 055901 (2008).

    Article  MathSciNet  Google Scholar 

  9. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Eling, R. Guedens and T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006).

    Article  MathSciNet  Google Scholar 

  11. G. Chirco and S. Liberati, Phys. Rev. D 81, 024016 (2010).

    Article  Google Scholar 

  12. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Article  Google Scholar 

  13. R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984), p. 222.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maki, T., Morita, M. (2014). Weyl Curvature Hypothesis in Terms of Spacetime Thermodynamics. In: García-Parrado, A., Mena, F., Moura, F., Vaz, E. (eds) Progress in Mathematical Relativity, Gravitation and Cosmology. Springer Proceedings in Mathematics & Statistics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40157-2_44

Download citation

Publish with us

Policies and ethics