Skip to main content

The Evolution of the Hominid Brain

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

The evolution of the human brain has been a combination of reorganization of brain components and increases of brain size through both hyperplasia and hypertrophy during development, underlain by neurogenomic changes that have involved epigenetic changes largely effecting regulation of growth dynamics. While both genomics and comparative neuroanatomical studies are invaluable to understanding how brains and behavior correlate, it is paleoneurology, based on endocast studies ( chapter “Virtual Anthropology and Biomechanics,” Vol. 1), which are the direct evidence demonstrating volume changes through time. Some convolutional details of the underlying cerebral cortex do appear on the endocranial surface. These details allow one to recognize reorganizational changes that include (1) a reduction of primary visual cortex and relative enlargement of posterior association cortex, (2) expanded Broca’s regions, and (3) cerebral asymmetries. The size of the hominid brain increased from about 450 ml 3.5 Ma ago to our current average volume of 1,350 ml, with a slight reduction since Neolithic times. Many more data from additional fossils will be necessary to decide how and when these two changes through time occurred and whether these were gradual or punctuated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper is adapted and expanded from an earlier chapter written for the Encyclopedia of Human Biology, 3rd Ed. Elsevier, In press.

References

  • Allen JS et al (2006) Looking for the Lunate Sulcus: A magnetic resonance imaging study in modern humans. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 288A(8):867–876

    Google Scholar 

  • Amunts K et al (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson B (2003) Brain imaging and g. In: Nyborg H (ed) The scientific study of general intelligence: tribute to Arthur R. Jensen. Pergamon, New York, pp 29–40

    Chapter  Google Scholar 

  • Andreasen NC, Flaum M, Swayze HV, O’Leary DS, Alliger R, Cohen G, Ehrhardt N, Yuh WTC (1993) Intelligence and brain structure in normal individuals. Am J Psychiatry 150:130–134

    Article  CAS  PubMed  Google Scholar 

  • Balzeau A, Gilissen E (2010) Endocranial shape asymmetries in Pan paniscus, Pan troglodytes and Gorilla gorilla assessed via skull based landmark analysis. J Hum Evol 59:54–69

    Article  PubMed  Google Scholar 

  • Balzeau A, Gilissen E, Grimaud-Hervé D (2012) Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins. PLoS One 7:e29581

    Google Scholar 

  • Bookstein F, Schäfer K, Prossinger H et al. (1999) Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat Rec 6:217–224

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalizationslehre der Großhirnrinde. In ihren Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, Leipzig

    Google Scholar 

  • Burgaleta M, Johnson W, Waber DP et al. (2013) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage 84:810–819

    Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T et al. (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1407

    Google Scholar 

  • Dart R (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115:195–199

    Article  Google Scholar 

  • Davies G, Tenesa A, Payton A et al. (2011) Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 16:996–1005

    Google Scholar 

  • Deacon T (1997) The symbolic species: the co-evolution of language and the brain. Norton, New York

    Google Scholar 

  • Falk D, Zollikofer CPE, Morimoto N, Ponce de León MS (2012) Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. PNAS 1119752109

    Google Scholar 

  • Falk D (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Frontiers in Human Neuroscience 8:134

    Google Scholar 

  • Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke’s brain language area homolog. Science 279:220–222

    Article  CAS  PubMed  Google Scholar 

  • Gokcumen O, Tischler V, Tica J et al. (2013) Primate genome architecture influences structural variation mechanisms and function consequences. Proc Natl Acad Sci U S A 110:15764–15769

    Google Scholar 

  • Gomez-Robles A, Hopkins WD, Sherwood CC (2013) Increases morphological asymmetry, evolvability and plasticity in human brain evolution. Proc R Soc B 280:20130575

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawks J (2012) Selection for smaller brains in Holocene human evolution. arXiv:1102.5604

    Google Scholar 

  • Henneberg M (1988) Decrease of human skull size in the Holocene. Hum Biol 60:395–405

    CAS  PubMed  Google Scholar 

  • Hernando-Herraez J (2013) Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet 9(13):1–12

    Google Scholar 

  • Holloway RL (1967) The evolution of the human brain: some notes toward a synthesis between neural structure and the evolution of complex behavior. Gen Syst 12:3–19

    Google Scholar 

  • Holloway RL (1969) Culture: a human domain. Curr Anthropol 10:395–412

    Article  Google Scholar 

  • Holloway RL (1979) Brain size, allometry, and reorganization: toward a synthesis. In: Hahn ME, Jensen C, Dudek BC (eds) Development and evolution of brain size: Behavioral implications. Academic Press, New York, pp 59–88

    Google Scholar 

  • Holloway RL (1980) Within – species brain-body weight variability: a re-examination of the Danish data and other primate species. Am J Phys Anthropol 53:109–121

    Article  CAS  PubMed  Google Scholar 

  • Holloway RL (1981) Culture, symbols, and human brain evolution. Dialect Anthropol 5:287–303

    Article  Google Scholar 

  • Holloway RL (1984) The Taung endocast and the lunate sulcus: a rejection of the hypothesis of its anterior position. Am J Phys Anthropol 64:285–287

    Article  CAS  PubMed  Google Scholar 

  • Holloway RL (1995) Toward a synthetic theory of human brain evolution. In: Changeux JP, Chavaillon J (eds) Origins of the human brain. Clarendon, Oxford, pp 42–54

    Google Scholar 

  • Holloway RL (1996) Evolution of the human brain. In: Lock A, Peters C (eds) Handbook of human symbolic evolution. Oxford University Press, New York, pp 74–116, Chap. 4

    Google Scholar 

  • Holloway RL (1997) Brain evolution. In: Dulbecco R (ed) Encyclopedia of human biology, vol 2. Academic, New York, pp 189–200

    Google Scholar 

  • Holloway RL (2000) Brain. In: Delson E, Tattersall I, Van Couvering J, Brooks AS (eds) Encyclopedia of human evolution and prehistory, 2nd edn., pp 141–149

    Google Scholar 

  • Holloway RL (2008) The human brain evolving: a personal retrospective. Annu Rev Anthropol 37:1–19

    Article  Google Scholar 

  • Holloway RL (2010) Human brain endocasts, Taung, and the LB1 Hobbit brain. In: Broadfield D, Yuan M, Schick KD et al. (eds) The human brain evolving: paleoneurological studies in honor of Ralph L. Holloway. Stone Age Institute, Gosport

    Google Scholar 

  • Holloway RL (2012) Language and tool making are similar cognitive processes. Behav Brain Sci 35(04):326

    Article  Google Scholar 

  • Holloway RL, de LaCoste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    Article  CAS  PubMed  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) In: Schwartz JH, Tattersall I (eds) The human fossil record. volume 3: brain endocasts: the paleoneurological evidence. Wiley, New York

    Chapter  Google Scholar 

  • Holloway RL, Broadfield DC, Carlson K (2013) Metopism and early human brain evolution. Am J Phys Anthro 150(S56):150–151

    Google Scholar 

  • Hopkins WD, Nir TM (2010) Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): the effect of handedness and comparison with findings in humans. Behav Brain Res 208:436–443

    Article  PubMed Central  PubMed  Google Scholar 

  • Insel T, Shapiro LE (1992) Oxytocin receptors and maternal behavior. Ann N Y Acad Sci 652:448–451

    Article  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of brain and intelligence. Academic, New York

    Google Scholar 

  • Klein RG (2009) The human career. Human biological and cultural origins, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

  • LeMay M (1976) Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primates. Ann N Y Acad Sci 280:349–366

    Article  CAS  PubMed  Google Scholar 

  • Martin RD (1983) Human evolution in an ecological context. American Museum of Natural History James Arthur lecture, New York, 1982

    Google Scholar 

  • Martin RD, Isler K (2010) The maternal energy hypothesis of brain evolution: an update. In: Broadfield DC et al (eds) The human brain evolving: paleoneurological studies in honor of Ralph L. Holloway. Stone Age Institute, Gosport

    Google Scholar 

  • Miller DJ, Duka T, Stimpson CD et al. (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A 109(41):16480–16485

    Google Scholar 

  • Neubauer S, Gunz P, Weber GW et al. (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62:498–510

    Google Scholar 

  • Nyborg H (ed) (2003) The scientific study of general intelligence: tribute to Arthur R. Jensen. Pergamon, Amsterdam

    Google Scholar 

  • Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organiztion between Neanderthals and anatomically modern humans. Proc Roy Soc B Biol Sci 280:1758

    Google Scholar 

  • Preuss TD (2012) Human brain evolution: from gene discovery to phenotypic discovery. Proc Natl Acad Sci U S A 109(Suppl 1):10709–10716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM et al. (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:382–384

    Google Scholar 

  • Schenker NM, Hopkins WD, Spocter MA et al. (2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb Cortex 20:730–742

    Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Barger N, Schenker N (2010) Brain reorganization in humans and apes. In: Broadfield DC, Yuan M, Schick KD et al. (eds) The human brain evolving: paleoneurological studies in honor of Ralph L. Holloway. Stone Age Institute, Gosport

    Google Scholar 

  • Sherwood CC, Broadfield DC, Holloway RL et al. (2003) Variability in Broca’s area homologue in African great apes: implications for language evolution. Anat Rec 271A:276–285

    Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    Article  CAS  PubMed  Google Scholar 

  • Stout D (2006) Oldowan tool making and hominin brain evolution: theory and research using positron emission tomography (PET). In: Toth N, Schick K (eds) The Oldowan: case studies into the earliest Stone Age. Stone Age Institute, Gosport

    Google Scholar 

  • Tobias PV (1971) The brain in hominid evolution. Columbia University Press, New York

    Google Scholar 

  • Toth N (1985) Archaeological evidence for preferential right-handedness in lower and middle Pleistocene, and its behavioral implications. J Hum Evol 14:607–614

    Article  Google Scholar 

  • Uylings HBM, van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rats and primates, including humans. Prog Brain Res 85:31–62

    Article  CAS  PubMed  Google Scholar 

  • von Bonin G (1937) Brain weight and body weight in mammals. Journal of General Psychology 16:379–389

    Google Scholar 

  • von Bonin G (1948) The frontal of primates: Cytoarchitectural studies. Research Publicartion - Association for Research in Nervous and Mental Disease 27:67–83

    Google Scholar 

  • Weber GW, Gunz P, Neubauer S, Mitteroecker P, Bookstein FL (2012) Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation. In: Reynolds SC, Gallagher A (eds) African genesis: perspectives on hominin evolution. Cambridge University Press, New York, pp 298–316

    Google Scholar 

  • Wey H-Y, Phillips KA, McKay DR et al. (2013) Multi-region hemispheric specialization differentiates human from nonhuman primate brain function. Brain Struct Funct

    Google Scholar 

  • Zeng I, Konopka G, Hunt BG et al. (2012) Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 91:455–465

    Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2013) Pandora’s growing box: inferring the evolution and development of hominin brains from endocasts. Evol Anthropol 22:20–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph L. Holloway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Holloway, R.L. (2015). The Evolution of the Hominid Brain. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39979-4_81

Download citation

Publish with us

Policies and ethics