Skip to main content

Modeling Two-Player Games in the Sigma Graphical Cognitive Architecture

  • Conference paper
Artificial General Intelligence (AGI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7999))

Included in the following conference series:

Abstract

Effective social interaction and, in particular, a Theory of Mind are critical components of human intelligence, allowing us to form beliefs about other people, generate expectations about their behavior, and use those expectations to inform our own decision-making. This article presents an investigation into methods for realizing Theory of Mind within Sigma, a graphical cognitive architecture. By extending the architecture to capture independent decisions and problem-solving for multiple agents, we implemented Sigma models of several canonical examples from game theory. We show that the resulting Sigma agents can capture the same behaviors prescribed by equilibrium solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning. Cognition 113(3), 329–349 (2009)

    Article  Google Scholar 

  2. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)

    Google Scholar 

  3. Goodie, A.S., Doshi, P., Young, D.L.: Levels of theory-of-mind reasoning in competitive games. Journal of Behavioral Decision Making 25(1), 95–108 (2012)

    Article  Google Scholar 

  4. Goodman, N.D., Baker, C.L., Bonawitz, E.B., Mansinghka, V.K., Gopnik, A., Wellman, H., Schulz, L., Tenenbaum, J.B.: Intuitive theories of mind: A rational approach to false belief. In: Proceedings of the Conference of the Cognitive Science Society, pp. 1382–1387 (2006)

    Google Scholar 

  5. Güth, W., Schmittberger, R., Schwarze, B.: An experimental analysis of ultimatum bargaining. Journal of Economic Behavior & Organization 3(4), 367–388 (1982)

    Article  Google Scholar 

  6. Hiatt, L.M., Trafton, J.G.: A cognitive model of theory of mind. In: Proceedings of the International Conference on Cognitive Modeling (2010)

    Google Scholar 

  7. Kahneman, D.: Thinking, fast and slow. Farrar, Straus and Giroux (2011)

    Google Scholar 

  8. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press (2009)

    Google Scholar 

  9. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laird, J.E.: The Soar Cognitive Architecture. MIT Press (2012)

    Google Scholar 

  11. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10(2), 141–160 (2009)

    Article  Google Scholar 

  12. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games. Games and Economic Behavior 10(1), 6–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pynadath, D.V., Marsella, S.C.: PsychSim: Modeling theory of mind with decision-theoretic agents. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1181–1186 (2005)

    Google Scholar 

  14. Rosenbloom, P.S.: From memory to problem solving: Mechanism reuse in a graphical cognitive architecture. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 143–152. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Rosenbloom, P.S.: Deconstructing reinforcement learning in Sigma. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 262–271. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Rosenbloom, P.S.: Extending mental imagery in Sigma. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 272–281. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: 1. Detection, search, and attention. Psychological Review 84, 1–66 (1977)

    Article  Google Scholar 

  18. Whiten, A. (ed.): Natural Theories of Mind. Basil Blackwell, Oxford (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pynadath, D.V., Rosenbloom, P.S., Marsella, S.C., Li, L. (2013). Modeling Two-Player Games in the Sigma Graphical Cognitive Architecture. In: Kühnberger, KU., Rudolph, S., Wang, P. (eds) Artificial General Intelligence. AGI 2013. Lecture Notes in Computer Science(), vol 7999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39521-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39521-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39520-8

  • Online ISBN: 978-3-642-39521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics