Skip to main content

Trading Off Subtask Dispersion and Response Time in Split-Merge Systems

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7984))

Abstract

In many real-world systems incoming tasks split into subtasks which are processed by a set of parallel servers. In such systems two metrics are of potential interest: response time and subtask dispersion. Previous research has been focused on the minimisation of one, but not both, of these metrics. In particular, in our previous work, we showed how the processing of selected subtasks can be delayed in order to minimise expected subtask dispersion and percentiles of subtask dispersion in the context of split-merge systems. However, the introduction of subtask delays obviously impacts adversely on task response time and maximum sustainable system throughput. In the present work, we describe a methodology for managing the trade off between subtask dispersion and task response time. The objective function of the minimisation is based on the product of expected subtask dispersion and expected task response time. Compared with our previous methodology, we show how our new technique can achieve comparable subtask dispersion with substantial improvements in expected task response time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16(1), 1–3 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baccelli, F., Makowski, A.M., Shwartz, A.: The fork-join queue and related systems with synchronization constraints: Stochastic ordering and computable bounds. Advances in Applied Probability 21(3), 629–660 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccelli, F., Massey, W.A., Towsley, D.: Acyclic fork-join queuing networks. J. ACM 36(3), 615–642 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. David, H.A., Nagaraja, H.N.: The non-IID case. In: Order Statistics, 3rd edn., ch. 5, pp. 95–120. J. Wiley & Sons, Inc. (2003)

    Chapter  Google Scholar 

  5. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley Series in Probability and Mathematical Statistics. John Wiley (2003)

    Google Scholar 

  6. Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands I. SIAM Journal on Applied Mathematics 44(5), 1041–1053 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flatto, L.: Two parallel queues created by arrivals with two demands ii. SIAM Journal on Applied Mathematics 45(5), 861–878 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of energy-performance trade-off for server farm management. Performance Evaluation 67(11), 1155–1171 (2010)

    Article  Google Scholar 

  9. Harrison, P.G., Zertal, S.: Queueing models of RAID systems with maxima of waiting times. Perf. Evaluation 64(7-8), 664–689 (2007)

    Article  Google Scholar 

  10. Heidelberger, P., Trivedi, K.S.: Analytic queueing models for programs with internal concurrency. IEEE Transactions on Computers C-32(1), 73–82 (1983)

    Article  Google Scholar 

  11. Kim, C., Agrawala, A.K.: Analysis of the fork-join queue. IEEE Transactions on Computers 38(2), 250–255 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knottenbelt, W.J., Tsimashenka, I., Harrison, P.G.: Reducing subtask dispersion in parallel systems. In: Trends in Parallel, Distributed, Grid and Cloud Computing for Engineering. Saxe-Coburg Publications (2013)

    Google Scholar 

  13. Lebrecht, A., Knottenbelt, W.J.: Response Time Approximations in Fork-Join Queues. In: 23rd Annual UK Performance Engineering Workshop, UKPEW (July 2007)

    Google Scholar 

  14. Lui, J.C.S., Muntz, R.R., Towsley, D.: Computing performance bounds of fork-join parallel programs under a multiprocessing environment. IEEE Transactions on Parallel and Distributed Systems 9(3), 295–311 (1998)

    Article  Google Scholar 

  15. Timothy Marler, R., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nelson, R., Tantawi, A.N.: Approximate analysis of fork/join synchronization in parallel queues. IEEE Transactions on Computers 37(6), 739–743 (1988)

    Article  Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical optimization. Springer (1999)

    Google Scholar 

  18. Towsley, D., Rommel, C.G., Stankovic, J.A.: Analysis of fork-join program response times on multiprocessors. IEEE Transactions on Parallel and Distributed Systems 1(3), 286–303 (1990)

    Article  Google Scholar 

  19. Tsimashenka, I., Knottenbelt, W.J.: Reduction of Variability in Split-Merge Systems. In: Imperial College Computing Student Workshop (ICCSW 2011), pp. 101–107 (2011)

    Google Scholar 

  20. Tsimashenka, I., Knottenbelt, W.J., Harrison, P.: Controlling variability in split-merge systems. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012. LNCS, vol. 7314, pp. 165–177. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Varki, E.: Response time analysis of parallel computer and storage systems. IEEE Transactions on Parallel and Distributed Systems 12(11), 1146–1161 (2001)

    Article  Google Scholar 

  22. Varma, S., Makowski, A.M.: Interpolation approximations for symmetric fork-join queues. Performance Evaluation 20(13), 245–265 (1994)

    Article  Google Scholar 

  23. Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolfe, P.: Convergence conditions for ascent methods. II: Some corrections. SIAM Review 13(2), 185–188 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsimashenka, I., Knottenbelt, W.J. (2013). Trading Off Subtask Dispersion and Response Time in Split-Merge Systems. In: Dudin, A., De Turck, K. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2013. Lecture Notes in Computer Science, vol 7984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39408-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39408-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39407-2

  • Online ISBN: 978-3-642-39408-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics