Skip to main content

Mathematical Practice, Crowdsourcing, and Social Machines

  • Conference paper
Intelligent Computer Mathematics (CICM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7961))

Included in the following conference series:

Abstract

The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend.

The Study of Mathematical Practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question-answering system mathoverflow contains around 40,000 mathematical conversations, and polymath collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of “soft” aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal.

Crowdsourced mathematical activity is an example of a “social machine”, a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A Wiles, interview on PBS (2000), http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html

  2. http://events.inf.ed.ac.uk/sicsa-mcp/

  3. OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences (2011), http://oeis.org

  4. www.innocentive.com (retrieved October 2012)

  5. SOCIAM: the theory and practice of social machines, http://tinyurl.com/cmmwbcf

  6. http://ada00.math.uni-bielefeld.de/mediawiki-1.18.1 (retrieved October 2012)

  7. General polymath rules, http://polymathprojects.org/general-polymath-rules/

  8. Which finite nonabelian groups have long chains of subgroups as intervals in their subgroup lattice? (April 2011), http://mathoverflow.net/questions/62495

  9. Aberdein, A.: The uses of argument in mathematics. Argumentation 19, 287–301 (2005)

    Article  Google Scholar 

  10. Appel, K., Haken, W.: The solution of the four-color-map problem. Sci. Amer. 237(4), 108–121, 152 (1977)

    Google Scholar 

  11. Baars, B.: A cognitive theory of consciousness. Cambridge University Press (1988)

    Google Scholar 

  12. Barany, M.J., MacKenzie, D.: Chalk: Materials and concepts in mathematics research. New Representation in Scientific Practice (forthcoming)

    Google Scholar 

  13. Bartha, P.: By Parallel Reasoning. Oxford University Press, New York (2010)

    Book  Google Scholar 

  14. Barton, B.: The Language of Mathematics: Telling Mathematical Tales. Mathematics Education Library, vol. 46. Springer (2009)

    Google Scholar 

  15. Begel, A., Bosch, J., Storey, M.-A.: Social Networking Meets Software Development: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder. IEEE Software 30(1), 52–66 (2013)

    Article  Google Scholar 

  16. Berners-Lee, T., Fischetti, M.: Weaving the web - the original design and ultimate destiny of the World Wide Web by its inventor. HarperBusiness (2000)

    Google Scholar 

  17. Bourguignon, J.-P.: Mathematicians in France and in the world. L’Explosion des Mathematiques, pp. 92–97. SMF et SMAI (July 2002)

    Google Scholar 

  18. Bundy, A.: Automated theorem provers: a practical tool for the working mathematician? Ann. Math. Artif. Intell. 61(1), 3–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.): Calculemus/MKM 2009. LNCS, vol. 5625. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  20. Carette, J., Farmer, W.M.: A Review of Mathematical Knowledge Management. In: [19], pp. 233–246

    Google Scholar 

  21. Cellucci, C., Gillies, D.: Mathematical reasoning and heuristics. King’s College Publications, London (2005)

    MATH  Google Scholar 

  22. Charnley, J.: A Global Workspace Framework for Combined Reasoning. PhD thesis, Imperial College, London (2010)

    Google Scholar 

  23. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathematical Structures in Computer Science 21(6), 1301–1337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer (2002)

    Google Scholar 

  25. Colton, S., Muggleton, S.: Mathematical applications of Inductive Logic Programming. Machine Learning 64, 25–64 (2006)

    Article  MATH  Google Scholar 

  26. Corfield, D.: Assaying Lakatos’s philosophy of mathematics. Studies in History and Philosophy of Science 28(1), 99–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Crowley, J., Hezlet, S., Kirby, R., McClure, D.: Mathematics journals: what is valued and what may change. Notices Amer. Math. Soc. 58(8), 1127–1130 (2011); Report on the workshop held at MSRI, Berkeley, CA (February 14-16, 2011)

    MathSciNet  Google Scholar 

  28. DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems and programs. Commun. ACM 22(5), 271–280 (1979)

    Article  Google Scholar 

  29. Ernest, P.: Social constructivism as a philosophy of mathematics. State University of New York Press, Albany (1997)

    Google Scholar 

  30. Giaquinto, M.: Visual Thinking in Mathematics. Clarendon Press, Oxford (2007)

    Book  MATH  Google Scholar 

  31. Goffman, E.: The presentation of self in everyday life. Doubleday Anchor Books, New York (1959)

    Google Scholar 

  32. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)

    Google Scholar 

  33. Gowers, T.: Polymath1 and open collaborative mathematics, http://gowers.wordpress.com/2009/03/10/polymath1-and-open-collaborative-mathematics/

  34. Gowers, T.: Is massively collaborative mathematics possible? (March 2009), http://gowers.wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible/

  35. Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature 461(7266), 879–881 (2009)

    Article  Google Scholar 

  36. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)

    Google Scholar 

  38. Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research challenge for ai on the world wide web. Artif. Intell. 174(2), 156–161 (2010)

    Article  MathSciNet  Google Scholar 

  39. Hersh, R.: Mathematics has a front and a back. Synthese 88(2), 127–133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hume, D.: A treatise of human nature. Penguin Books (1969)

    Google Scholar 

  41. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of Automated Reasoning (2010) (forthcoming)

    Google Scholar 

  42. Jones, C.B.: The early search for tractable ways of reasoning about programs. IEEE Annals of the History of Computing 25(2), 26–49 (2003)

    Article  MathSciNet  Google Scholar 

  43. Justin Cranshaw, J., Kittur, A.: The polymath project: Lessons from a successful online collaboration in mathematics. In: CHI, Vancouver, BC, Canada, May 7-12 (2011)

    Google Scholar 

  44. Kitcher, P.: The Nature of Mathematical Knowledge. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  45. Kohlhase, M., Rabe, F.: Semantics of OpenMath and MathML3. Mathematics in Computer Science 6(3), 235–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  47. Lakoff, G., Núñez, R.: Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. Basic Books, New York (2000)

    Google Scholar 

  48. Larsen, S., Zandieh, M.: Proofs and refutations in the undergraduate mathematics classroom. Educational Studies in Mathematics 67(3), 205–216 (2008)

    Article  Google Scholar 

  49. Larvor, B.: Lakatos: An Introduction. Routledge, London (1998)

    MATH  Google Scholar 

  50. Lehmann, J., Varzinczak, I.J., Bundy, A.: Reasoning with context in the semantic web. J. Web Sem. 12, 1–2 (2012)

    Article  Google Scholar 

  51. Lenat, D.B.: Automated theory formation in mathematics. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 833–842. Morgan Kaufmann, Cambridge (1977)

    Google Scholar 

  52. MacKenzie, D.: Mechanizing proof. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  53. Mancosu, P., Jørgensen, K.F., Pedersen, S.A. (eds.): Visualization, Explanation and Reasoning Styles in Mathematics. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  54. Mancosu, P. (ed.): The Philosophy of Mathematical Practice. Oxford University Press, USA (2008)

    MATH  Google Scholar 

  55. McCasland, R., Bundy, A.: MATHsAiD: a Mathematical Theorem Discovery Tool. In: Proceedings of SYNASC, pp. 17–22. IEEE (2006)

    Google Scholar 

  56. Martin, U.: Computers, reasoning and mathematical practice. In: Computational logic (Marktoberdorf, 1997). NATO Adv. Sci. Ser. F Comput. Systems Sci., vol. 165, pp. 301–346. Springer, Berlin (1999)

    Chapter  Google Scholar 

  57. Martin, U., Pease, A.: The mathematics social machine will be social! In: SOHUMAN 2013 (to appear, 2013)

    Google Scholar 

  58. McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diagnosis of failed plan execution. Int. J. Semantic Web Inf. Syst. 3(3), 1–35 (2007)

    Article  Google Scholar 

  59. Nigam, V., Miller, D.: A Framework for Proof Systems. J. Autom. Reasoning 45(2), 157–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Systems with Applications 39(2), 1637–1646 (2011)

    Article  Google Scholar 

  61. Nielsen, M.: Reinventing discovery: the new era of networked science. Princeton University Press (2011)

    Google Scholar 

  62. Nunokawa, K.: Applying Lakatos’ theory to the theory of mathematical problem solving. Educational Studies in Mathematics 31(3), 269–293 (1996)

    Article  Google Scholar 

  63. Pease, A.: A Computational Model of Lakatos-style Reasoning. PhD thesis, School of Informatics, University of Edinburgh (2007), http://hdl.handle.net/1842/2113

  64. Pease, A., Colton, S., Charnley, J.: Automated theory formation: The next generation. IFCoLog Lectures in Computational Logic (forthcoming, 2013)

    Google Scholar 

  65. Pease, A., Martin, U.: Seventy four minutes of mathematics: An analysis of the third mini-polymath project. In: Proc. AISB Symp. on Mathematical Practice and Cognition II, pp. 19–29 (2012)

    Google Scholar 

  66. Plato: The Republic. OUP, Oxford (1993)

    Google Scholar 

  67. Pólya, G.: How to solve it. Princeton University Press (1945)

    Google Scholar 

  68. Pólya, G.: Mathematical Discovery. John Wiley and Sons, New York (1962)

    MATH  Google Scholar 

  69. Polymath, D.H.J.: A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175(3), 1283–1327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Popper, K.R.: Objective Knowledge. OUP, Ely House (1972)

    Google Scholar 

  71. De Roure, D., Goble, C.A.: Software design for empowering scientists. IEEE Software 26(1), 88–95 (2009)

    Article  Google Scholar 

  72. Schlimm, D.: Two ways of analogy: Extending the study of analogies to mathematical domains. Philosophy of Science 75, 178–200 (2008)

    Article  MathSciNet  Google Scholar 

  73. Schoenfeld, A.H.: Pólya, problem solving, and education. Mathematics Magazine 60(5), 283–291 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. Simon, H.: Machine discovery. Foundations of Science 2, 171–200 (1997)

    Google Scholar 

  75. Tappenden, J.: Mathematical concepts and definitions. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 256–275. Oxford University Press, Oxford (2008)

    Chapter  Google Scholar 

  76. Tappenden, J.: Mathematical concepts: Fruitfulness and naturalness. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 276–301. Oxford University Press, Oxford (2008)

    Chapter  Google Scholar 

  77. Tausczik, Y.R., Pennebaker, J.W.: Predicting the perceived quality of online mathematics contributions from users’ reputations. In: Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare, M. (eds.) CHI, pp. 1885–1888. ACM (2011)

    Google Scholar 

  78. Tausczik, Y.R., Pennebaker, J.W.: Participation in an online mathematics community: differentiating motivations to add. In: Poltrock, S.E., Simone, C., Grudin, J., Mark, G., Riedl, J. (eds.) CSCW, pp. 207–216. ACM (2012)

    Google Scholar 

  79. Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 240–257. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  80. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, U., Pease, A. (2013). Mathematical Practice, Crowdsourcing, and Social Machines. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds) Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Science(), vol 7961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39320-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39320-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39319-8

  • Online ISBN: 978-3-642-39320-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics