Skip to main content

Improving Students’ Technical Skills Using Mobile Virtual Laboratory: Pilot Study of Assembly Language Input Methods for Touchscreen Devices

  • Conference paper
Human Factors in Computing and Informatics (SouthCHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7946))

Included in the following conference series:

Abstract

The process of improving technical skills requires students to spend many hours both observing real systems at work and working in laboratories equipped with specially prepared apparatus. Beside personal motivation and discipline, there are objective factors which limit the amount of available laboratory time for students. To deal with the afore mentioned problem for electrical engineering and computer science courses teaching basic concepts of computer architecture at the undergraduate level, we have devised a pocket-size prototyping system which can be controlled from any kind of computer device, here including contemporary mobile phones and tablets. The issue which we tackle in this paper is the efficient use of touchscreen devices to input assembly language code controlling the operation of the main processing unit on the prototyping system. The results of the pilot study performed, which addresses accuracy and time needed to accomplish the task, are rather encouraging, and shows that our special variant of virtual keyboard did not deteriorate students’ performance when inputting assembly code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottentuit Junior, J.B., Coutinho, C.: Virtual Laboratories and M-Learning: learning with mobile devices. In: Proc. Int’l Multi-Conf. Society, Cybernetics and Informatics, pp. 275–278. International Institute of Informatics and Systemics (2007)

    Google Scholar 

  2. Alkouz, A., Al-Zoubi, A.Y., Otair, M.: J2ME-Based Mobile Virtual Laboratory for Engineering Education. International Journal of Interactive Mobile Technologies (iJIM) 2(2), 5–10 (2008)

    Google Scholar 

  3. Auer, M.E., Al-Zoubi, A.Y., Zutin, D.G.: Implementation of a Mobile Accessible Remote Lab. International Journal of Interactive Mobile Technologies (iJIM) 2(3), 7–11 (2008)

    Google Scholar 

  4. Glavinic, V., Kukec, M., Ljubic, S.: Mobile Virtual Laboratory: Learning Digital Design. In: Luzar, S.V., Hljuz, D.V. (eds) Proc. 29th Int’l Conf. Information Technology Interfaces (ITI 2007), pp. 325–410. SRCE University of Zagreb, Zagreb – Croatia (2007)

    Google Scholar 

  5. Glavinic, V., Kukec, M., Ljubic, S.: Digital Design Mobile Virtual Laboratory Implementation: A Pragmatic Approach. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2009. LNCS, vol. 5614, pp. 489–498. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. ThickButtons, http://www.thickbuttons.com/

  7. Nesbat, S.B.: A System for Fast, Full-Text Entry for Small Electronic Devices. In: Proc. 5th Int’l Conf. Multimodal Interfaces (ICMI 2003), pp. 4–11. ACM Press, New York (2003)

    Chapter  Google Scholar 

  8. Flit Keyboard, https://sites.google.com/site/flitkeyboard/

  9. 8Pen, http://www.8pen.com/

  10. Zhai, S., et al.: ShapeWriter on the iPhone – From the Laboratory to the Real World. In: Extended Abstracts on Human Factors in Computing Systems (EA CHI 2009), pp. 2667–2670. ACM Press, New York – USA (2009)

    Google Scholar 

  11. Swype, http://www.swype.com/

  12. SlideIT, http://www.mobiletextinput.com/

  13. Inference Group: The Dasher Project, http://www.inference.phy.cam.ac.uk/dasher/

  14. Likert, R.: A technique for the measurement of attitudes. Archives of Psychology 22, 1–55 (1932)

    Google Scholar 

  15. Maurer, T.J., Andrews, K.D.: Traditional, Likert, and Simplified Measures of Self-Efficacy. Educational and Psychological Measurement 60, 965–973 (2000)

    Article  Google Scholar 

  16. Franke, R.H., Kaul, J.D.: The Hawthorne Experiments: First Statistical Interpretation. American Sociological Review 43, 623–643 (1978)

    Article  Google Scholar 

  17. Dignath, C., Büttner, G.: Components of fostering self-regulated learning among students. A Meta-Analysis on Intervention Studies at Primary and Secondary School Level. Metacognition and Learning 3, 231–264 (2008)

    Google Scholar 

  18. Dignath, C., Buettner, G., Langfeldt, H.: How can primary school students learn self-regulated learning strategies most effectively? A meta-analysis on self-regulation training programmes. Educational Research Review 3, 101–129 (2008)

    Article  Google Scholar 

  19. Jonassen, D., Mayes, T., McAleese, R.: A Manifesto for a Constructivist Approach to Uses of Technology in Higher Education. In: Duffy, T., Lowyck, J., Jonassen, D., Welsh, T. (eds.) Designing Environments for Constructive Learning, vol. 105, pp. 231–247. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  20. Gil-Rodríguez, E.P., Rebaque-Rivas, P.: Mobile Learning and Commuting: Contextual Interview and Design of Mobile Scenarios. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 266–277. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Sharples, M.: The design of personal mobile technologies for lifelong learning. Computers & Education 34, 177–193 (2000)

    Article  Google Scholar 

  22. Sharples, M., Corlett, D., Westmancott, O.: The Design and Implementation of a Mobile Learning Resource. Personal and Ubiquitous Computing 6, 220–234 (2002)

    Article  Google Scholar 

  23. Holzinger, A., Nischelwitzer, A., Meisenberger, M.: Mobile Phones as a Challenge for m-Learning: Examples for Mobile Interactive Learning Objects (MILOs). In: Proc. 3rd IEEE Int’l Conf. Pervasive Computing and Communications (PerCom 2005), pp. 307–311. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  24. Kay, A.C.: A Personal Computer for Children of All Ages. 1 (1972)

    Google Scholar 

  25. Shudong, W., Higgins, M.: Limitations of Mobile Phone Learning. In: Proc. IEEE Int’l Workshop on Wireless and Mobile Technologies in Education (WMTE 2005), pp. 179–181. IEEE Computer Society, Washington, DC (2005)

    Chapter  Google Scholar 

  26. Wigdor, D., Wixon, D.: Brave NUI World: Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufmann Publishers Inc. (2011)

    Google Scholar 

  27. Stephanidis, C.: Editorial. International Journal – Universal Access in the Information Society 1, 1–3 (2001)

    Google Scholar 

  28. Repokari, L., Saarela, T., Kurki, I.: Visual Search on a Mobile Phone Display. In: Proc. Research Conf. South African Institute of Computer Scientists and Information Technologists on Enablement through Technology (SAICSIT 2002), pp. 253–253. SAICSIT (2002)

    Google Scholar 

  29. Baudisch, P., Rosenholtz, R.: Halo: a technique for visualizing off-screen objects. In: Proc. SIGCHI Conf. Human Factors in Computing Systems (CHI 2003), pp. 481–488. ACM, New York (2003)

    Google Scholar 

  30. Burigat, S., Chittaro, L., Gabrielli, S.: Visualizing locations of off-screen objects on mobile devices: a comparative evaluation of three approaches. In: Proc. 8th Conf. Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2006), pp. 239–246. ACM, New York (2006)

    Chapter  Google Scholar 

  31. Lee, S., Zhai, S.: The Performance of Touch Screen Soft Buttons. In: Proc. 27th Int’l Conf. Human Factors in Computing Systems (CHI 2009), pp. 309–318. ACM Press, New York (2009)

    Google Scholar 

  32. Parhi, P., Karlson, A.K., Bederson, B.B.: Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices. In: Proc. 8th Conf. Human-computer interaction with mobile devices and services (MobileHCI 2006), pp. 203–210. ACM Press, New York (2006)

    Chapter  Google Scholar 

  33. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1993)

    Google Scholar 

  34. Holzinger, A.: Usability engineering methods for software developers. Communications of the ACM 48, 71–74 (2005)

    Article  Google Scholar 

  35. Glavinic, V., Ljubic, S., Kukec, M.: Supporting universal usability of mobile software: touchscreen usability meta-test. In: Stephanidis, C. (ed.) Universal Access in HCI, Part III, HCII 2011. LNCS, vol. 6767, pp. 26–35. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Microchip PICmicro x14 Instruction Set, http://techtrain.microchip.com/x14/instruc/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kukec, M., Ljubic, S., Glavinic, V. (2013). Improving Students’ Technical Skills Using Mobile Virtual Laboratory: Pilot Study of Assembly Language Input Methods for Touchscreen Devices. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds) Human Factors in Computing and Informatics. SouthCHI 2013. Lecture Notes in Computer Science, vol 7946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39062-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39062-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39061-6

  • Online ISBN: 978-3-642-39062-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics