Skip to main content

Efficient Algorithms for Universal Quantum Simulation

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

Abstract

A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiVincenzo, D.P.: Quantum Computation. Science 270, 255–261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, E., Vazirani, U.: Quantum Complexity Theory. SIAM J. Comp. 26, 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adcock, M.R.A., Høyer, P., Sanders, B.C.: Limitations on continuous variable quantum algorithms with Fourier transforms. New J. Phys. 11, 103035 (2009)

    Article  Google Scholar 

  4. Buluta, I., Nori, F.: Quantum Simulators. Science 326, 108–111 (2009)

    Article  Google Scholar 

  5. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Cleland, A.N., Geller, M.R., Martinis, J.M.: Emulation of a Quantum Spin with a Superconducting Phase Qudit. Science 325, 722–725 (2009)

    Article  Google Scholar 

  6. Abrams, D.S., Lloyd, S.: Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. Phys. Rev. Lett. 79, 2586–2589 (1997)

    Article  Google Scholar 

  7. Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum Algorithms for Quantum Field Theories. Science 336, 1130–1133 (2012)

    Article  Google Scholar 

  8. Kempe, J., Kitaev, A., Regev, O.: The Complexity of the Local Hamiltonian Problem. SIAM J. Comput. 35, 1070–1097 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wiebe, N., Berry, D.W., Høyer, P., Sanders, B.C.: Higher order decompositions of ordered operator exponentials. J. Phys. A: Math. Theor. 43, 065203 (2010)

    Article  Google Scholar 

  10. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  11. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  12. Lloyd, S.: Universal Quantum Simulators. Science 273, 1073–1078 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aharonov, D., Ta-Shma, A.: Adiabatic Quantum State Generation and Statistical Zero Knowledge. In: Proc. 35th Annual ACM Symp. on Theory of Computing, pp. 20–29. ACM, New York (2003)

    Google Scholar 

  14. Childs, A.M.: Quantum information processing in continuous time. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  15. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Guttman, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk. In: Proc. 35th Annual ACM Symp. on Theory of Computing, pp. 59–68. ACM, New York (2003)

    Google Scholar 

  16. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Comm. Math. Phys. 270, 359–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Quantum algorithms for Hamiltonian simulation. In: Chen, G., Kauffman, L., Lomonaco, S.J. (eds.) Mathematics of Quantum Computation and Quantum Technology, Ch. 4, pp. 89–110. Taylor & Francis, Oxford (2007)

    Google Scholar 

  18. Childs, A.M., Kothari, R.: Simulating sparse Hamiltonians with star decompositions. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC 2010. LNCS, vol. 6519, pp. 94–103. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Childs, A.M., Berry, D.W.: Black-box Hamiltonian simulation and unitary implementation 12, 29–62 (2012)

    Google Scholar 

  20. Raeisi, S., Wiebe, N., Sanders, B.C.: Quantum-Circuit Design for Efficient Simulations of Many-Body Quantum Dynamics. New J. Phys. 14, 103017 (2012)

    Article  Google Scholar 

  21. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanders, B.C. (2013). Efficient Algorithms for Universal Quantum Simulation. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics