Skip to main content

The Role of Human Papillomaviruses in Oncogenesis

  • Chapter
  • First Online:
Viruses and Human Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 193))

Abstract

Human papillomaviruses (HPVs) are the causative agents of cervical and other anogenital as well as oral cancers. Approximately fifty percent of virally induced cancers in the USA are associated with HPV infections. HPVs infect stratified epithelia and link productive replication with differentiation. The viral oncoproteins, E6, E7, and E5, play important roles in regulating viral functions during the viral life cycle and also contribute to the development of cancers. p53 and Rb are two major targets of the E6 and E7 oncoproteins, but additional cellular proteins also play important roles. E5 plays an auxiliary role in contributing to the development of cancers. This review will discuss the various targets of these viral proteins and what roles they play in viral pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodily J, Laimins LA (2011) Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol 19(1):33–39. doi:10.1016/j.tim.2010.10.002

    Article  PubMed  CAS  Google Scholar 

  • Bouvard V, Storey A, Pim D, Banks L (1994a) Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J 13(22):5451–5459

    PubMed  CAS  Google Scholar 

  • Bouvard V, Matlashewski G, Gu ZM, Storey A, Banks L (1994b) The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601. doi:10.1038/35404

    Article  PubMed  CAS  Google Scholar 

  • Conrad M, Bubb VJ, Schlegel R (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 67(10):6170–6178

    PubMed  CAS  Google Scholar 

  • Davies R, Hicks R, Crook T, Morris J, Vousden K (1993) Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol 67(5):2521–2528

    PubMed  CAS  Google Scholar 

  • DiMaio D, Mattoon D (2001) Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20(54):7866–7873. doi:10.1038/sj.onc.1204915

    Article  PubMed  CAS  Google Scholar 

  • Disbrow GL, Hanover JA, Schlegel R (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 79(9):5839–5846. doi:10.1128/JVI.79.9.5839-5846.2005

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Munger K (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol 77(22):12331–12335

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proce Natl Acad Sci USA 97(18):10002–10007. doi:10.1073/pnas.170093297

    Article  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937 (New York)

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Guida P, Munger K, Harlow E (1992) Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 66(12):6893–6902

    PubMed  CAS  Google Scholar 

  • Edmonds C, Vousden KH (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol 63(6):2650–2656

    PubMed  CAS  Google Scholar 

  • Fehrmann F, Laimins LA (2003) Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene 22(33):5201–5207. doi:10.1038/sj.onc.1206554

    Article  PubMed  CAS  Google Scholar 

  • Fehrmann F, Klumpp DJ, Laimins LA (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 77(5):2819–2831

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. doi:10.1002/ijc.25516

    Article  PubMed  CAS  Google Scholar 

  • Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11(16):2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Gewin L, Galloway DA (2001) E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 75(15):7198–7201. doi:10.1128/JVI.75.15.7198-7201.2001

    Article  PubMed  CAS  Google Scholar 

  • Howie HL, Katzenellenbogen RA, Galloway DA (2009) Papillomavirus E6 proteins. Virology 384(2):324–334. doi:10.1016/j.virol.2008.11.017

    Article  PubMed  CAS  Google Scholar 

  • Howley PM, Lowy DR (2007) Papillomaviruses. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Jones DL, Alani RM, Munger K (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11(16):2101–2111

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA (2009) NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 83(13):6446–6456. doi:10.1128/JVI.02556-08

    Article  PubMed  CAS  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94(21):11612–11616

    Article  PubMed  CAS  Google Scholar 

  • Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380(6569):79–82. doi:10.1038/380079a0

    Article  PubMed  CAS  Google Scholar 

  • Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10(9):1054–1072

    Article  PubMed  CAS  Google Scholar 

  • Kuhne C, Banks L (1998) E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273(51):34302–34309

    Article  PubMed  CAS  Google Scholar 

  • Kukimoto I, Aihara S, Yoshiike K, Kanda T (1998) Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun 249(1):258–262. doi:10.1006/bbrc.1998.9066

    Article  PubMed  CAS  Google Scholar 

  • Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M, Ariga H, Inoue M (2000) Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acid Res 28(3):669–677

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Weiss RS, Javier RT (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94(13):6670–6675

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74(20):9680–9693

    Article  PubMed  CAS  Google Scholar 

  • Liu JP (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13(15):2091–2104

    PubMed  CAS  Google Scholar 

  • Longworth MS, Laimins LA (2004a) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68(2):362–372. doi:10.1128/MMBR.68.2.362-372.2004

    Article  PubMed  CAS  Google Scholar 

  • Longworth MS, Laimins LA (2004b) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 78(7):3533–3541

    Article  PubMed  CAS  Google Scholar 

  • Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79(3):328–337

    Article  PubMed  CAS  Google Scholar 

  • Markowitz LE, Dunne EF, Saraiya M, Lawson HW, Chesson H, Unger ER (2007) Quadrivalent human papillomavirus vaccine: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 56(RR-2):1–24 (Morbidity and mortality weekly report Recommendations and reports/Centers for Disease Control)

    Google Scholar 

  • Maufort JP, Williams SM, Pitot HC, Lambert PF (2007) Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 67(13):6106–6112. doi:10.1158/0008-5472.CAN-07-0921

    Article  PubMed  CAS  Google Scholar 

  • Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev 10(8):550–560. doi:10.1038/nrc2886

    Article  CAS  Google Scholar 

  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63(10):4417–4421

    PubMed  CAS  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442. doi:10.1038/sj.cdd.4401183

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2000) Estimating the world cancer burden: Globocan. Int J Cancer 94(2):153–156

    Article  Google Scholar 

  • Patel D, Huang SM, Baglia LA, McCance DJ (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18(18):5061–5072. doi:10.1093/emboj/18.18.5061

    Article  PubMed  CAS  Google Scholar 

  • Petti L, Nilson LA, DiMaio D (1991) Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J 10(4):845–855

    PubMed  CAS  Google Scholar 

  • Regan JA, Laimins LA (2008) Bap31 is a novel target of the human papillomavirus E5 protein. J Virol 82(20):10042–10051. doi:10.1128/JVI.01240-08

    Article  PubMed  CAS  Google Scholar 

  • Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63(16):4862–4871

    PubMed  CAS  Google Scholar 

  • Ronco LV, Karpova AY, Vidal M, Howley PM (1998) Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12(13):2061–2072

    Article  PubMed  CAS  Google Scholar 

  • Ruesch MN, Laimins LA (1998) Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology 250(1):19–29. doi:10.1006/viro.1998.9359

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136. doi:0092-8674(90)90409-8

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23(16):2809–2818. doi:10.1038/sj.onc.1207516

    Article  PubMed  CAS  Google Scholar 

  • Stanley M (2008) Immunobiology of HPV and HPV vaccines. Gynecol Oncol 109(2):S15–S21. doi:10.1016/j.ygyno.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  • Stanley M (2010) HPV: immune response to infection and vaccination. Infect Agent Cancer 5:19. doi:10.1186/1750-9378-5-19

    Article  PubMed  Google Scholar 

  • Stoppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ (1996) The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223(1):251–254. doi:10.1006/viro.1996.0475

    Article  PubMed  CAS  Google Scholar 

  • Straight SW, Hinkle PM, Jewers RJ, McCance DJ (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67(8):4521–4532

    PubMed  CAS  Google Scholar 

  • Straight SW, Herman B, McCance DJ (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 69(5):3185–3192

    PubMed  CAS  Google Scholar 

  • Thomas M, Banks L (1999) Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol 80(Pt 6):1513–1517

    PubMed  CAS  Google Scholar 

  • Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci USA 96(15):8449–8454

    Article  PubMed  CAS  Google Scholar 

  • Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M, Cavalieri F, Hunt T, Crawford L (1993) HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8(1):195–202

    PubMed  CAS  Google Scholar 

  • Valle GF, Banks L (1995) The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 76(Pt 5):1239–1245

    Article  PubMed  Google Scholar 

  • Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375(6534):812–815. doi:10.1038/375812a0

    Article  PubMed  CAS  Google Scholar 

  • Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13(11):2323–2330

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Degenkolbe R, Bernard HU, O’Connor MJ (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 73(8):6209–6219

    PubMed  CAS  Google Scholar 

  • zur Hausen H (1996) Papillomavirus infections–a major cause of human cancers. Biochim Biophys Acta 1288(2):F55–F78

    PubMed  Google Scholar 

  • zur Hausen H (2009) Papillomaviruses in the causation of human cancers: a brief historical account. Virology 384(2):260–265. doi:10.1016/j.virol.2008.11.046

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H, de Villiers EM (1994) Human papillomaviruses. Annu Rev Microbiol 48:427–447. doi:10.1146/annurev.mi.48.100194.002235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laimonis A. Laimins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mighty, K.K., Laimins, L.A. (2014). The Role of Human Papillomaviruses in Oncogenesis. In: Chang, M., Jeang, KT. (eds) Viruses and Human Cancer. Recent Results in Cancer Research, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38965-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38965-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38964-1

  • Online ISBN: 978-3-642-38965-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics