Skip to main content

The Phylum Thermotogae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The phylum Thermotogae is comprised of anaerobic, thermophilic, as well as mesophilic bacteria that are surrounded by an outer sheathlike envelope referred to as a “toga.” The species from this deep-branching group exhibit Gram-negative staining, but due to the absence of an archetypal outer cell membrane, they are considered monoderm (or atypical diderm) bacteria. This phylum presently contains 10 genera harboring 41 validated species which are all part of a single family, Thermotogaceae, within the order Thermotogales. Comparative analyses of genome sequences have led to the discovery of numerous conserved signature indels (CSIs), in proteins, which are specific for different monophyletic clades of Thermotogae. These molecular markers provide reliable means for demarcation of different clades of the Thermotogae and for the taxonomical organization of this phylum. Based upon their phylogenetic branching and the discovered molecular markers, it has been proposed that the class Thermotogae be divided into three orders. These include an emended order Thermotogales containing the families Thermotogaceae (emended) and Fervidobacteriaceae fam. nov. and two new orders, Petrotogales and Kosmotogales. The identified CSIs also suggest that although the Thermotogae species have undergone gene exchanges with other prokaryotes, particularly with thermophilic organisms, the extent of such gene transfers is limited and they do not significantly affect the monophyly or distinctness of species from this phylum. Thermotogae species, due to their ability to efficiently metabolize numerous organic substrates, producing H2 gas as a by-product, in conjunction with the thermostability of their enzymes, have also become an important focal point for different biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci USA 109:4962–4967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • Akimkina T, Ivanov P, Kostrov S, Sokolova T, Bonch-Osmolovskaya E, Firman K, Dutta CF, McClellan JA (1999) A highly conserved plasmid from the extreme thermophile Thermotoga maritima MC24 is a member of a family of plasmids distributed worldwide. Plasmid 42:236–240

    CAS  PubMed  Google Scholar 

  • Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    CAS  PubMed  Google Scholar 

  • Andrews KT, Patel BK (1996) Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269

    CAS  PubMed  Google Scholar 

  • Antoine E, Cilia V, Meunier JR, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123

    CAS  PubMed  Google Scholar 

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626

    CAS  PubMed  Google Scholar 

  • Bachleitner M, Ludwig W, Stetter KO, Schleifer KH (1989) Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritima. FEMS Microbiol Lett 48:115–120

    CAS  PubMed  Google Scholar 

  • Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci USA 93:7749–7754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balk M, Weijma J, Stams AJ (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  PubMed  Google Scholar 

  • Bandlish RK, Michael HJ, Epting KL, Vieille C, Kelly RM (2002) Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnol Bioeng 80:185–194

    CAS  PubMed  Google Scholar 

  • Bapteste E, O'Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L, Lapointe FJ, Dupre J, Dagan T, Boucher Y, Martin W (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    PubMed Central  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  PubMed  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus Isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1986) A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51:1180–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau ML, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585

    CAS  PubMed  Google Scholar 

  • Ben Hania W, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML (2012) Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol 62:1377–1382

    CAS  PubMed  Google Scholar 

  • Bhandari V, Gupta RS (2013) Molecular signatures for the phylum (Class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie van Leeuwenhoek [Epub ahead of print], PMID: 24166034

    Google Scholar 

  • Bhandari V, Naushad HS, Gupta RS (2012) Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2:98

    PubMed Central  PubMed  Google Scholar 

  • Bocchetta M, Gribaldo S, Sanangelantoni A, Cammarano P (2000) Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences. J Mol Evol 50:366–380

    CAS  PubMed  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    CAS  PubMed  Google Scholar 

  • Boussau B, Gueguen L, Gouy M (2008) Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol Biol 8:272

    PubMed Central  PubMed  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417:244

    CAS  PubMed  Google Scholar 

  • Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y (2007) Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. Int J Syst Evol Microbiol 57:2333–2336

    CAS  PubMed  Google Scholar 

  • Calteau A, Gouy M, Perriere G (2005) Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 60:557–565

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Snijders AP, Chakravorty R, Ahmed M, Tarek AM, Hossain MA (2010) Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol 56:878–887

    CAS  PubMed  Google Scholar 

  • Chen CC, Adolphson R, Dean JFD, Eriksson KE, Adams MWW, Westpheling J (1997) Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermotoga maritima. Enzyme Microb Technol 20:39–45

    CAS  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2004) A genomic perspective on the relationship between the Aquificales and the epsilon-Proteobacteria. Syst Appl Microbiol 27:313–322

    CAS  PubMed  Google Scholar 

  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905

    CAS  PubMed  Google Scholar 

  • Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA 105:10039–10044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek 93:37–49

    PubMed  Google Scholar 

  • Damste JS, Rijpstra WI, Hopmans EC, Schouten S, Balk M, Stams AJ (2007) Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch Microbiol 188:629–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of three species of Geotoga and Petrotoga: two new Genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200

    Google Scholar 

  • De Rosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter KO, Trincone A (1988) A new 15,16-dimethyl-30-glyceryloxytriacontanoic acid from lipids of Thermotoga maritima. Chem Commun 1300–1301

    Google Scholar 

  • Di Giulio M (2001) The universal ancestor was a thermophile or a hyperthermophile. Gene 281:11–17

    PubMed  Google Scholar 

  • Di Giulio M (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436

    PubMed  Google Scholar 

  • Dipippo JL, Nesbo CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000

    CAS  PubMed  Google Scholar 

  • Doolittle WF (2000) Uprooting the tree of life. Sci Am 282:90–95

    CAS  PubMed  Google Scholar 

  • Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond B Biol Sci 364:2221–2228

    PubMed Central  PubMed  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191

    CAS  Google Scholar 

  • Dutilh BE, Snel B, Ettema TJ, Huynen MA (2008) Signature genes as a phylogenomic tool. Mol Biol Evol 25:1659–1667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engel AM, Cejka Z, Lupas A, Lottspeich F, Baumeister W (1992) Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J 11:4369–4378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksen NT, Riis ML, Holm NK, Iversen N (2011) H(2) synthesis from pentoses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300

    CAS  PubMed  Google Scholar 

  • Euzeby JP (2011) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/classifphyla.html

  • Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    CAS  PubMed  Google Scholar 

  • Feng Y, Cheng L, Zhang X, Li X, Deng Y, Zhang H (2010) Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 60:932–937

    CAS  PubMed  Google Scholar 

  • Forterre P, De la Tour CB, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles—probable transfer of a thermoadaptation trait from archaea to bacteria. Trends Genet 16:152–154

    CAS  PubMed  Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frock AD, Notey JS, Kelly RM (2010) The genus Thermotoga: recent developments. Environ Technol 31:1169–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galperin MY, Noll KM, Romano AH (1996) The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana. Appl Environ Microbiol 62:2915–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    CAS  PubMed  Google Scholar 

  • Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101:45–54

    PubMed  Google Scholar 

  • Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B, Paramanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Van Leeuwenhoek 90:69–91

    CAS  PubMed  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10:1719–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gluch MF, Typke D, Baumeister W (1995) Motility and thermotactic responses of Thermotoga maritima. J Bacteriol 177:5473–5479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    CAS  PubMed  Google Scholar 

  • Griffiths E, Gupta RS (2004) Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int Microbiol 7:41–52

    CAS  PubMed  Google Scholar 

  • Griffiths E, Gupta RS (2006a) Lateral transfers of serine hydroxymethyl transferase (glyA) and UDP-N-acetylglucosamine enolpyruvyl transferase (murA) genes from free-living Actinobacteria to the parasitic chlamydiae. J Mol Evol 63:283–296

    CAS  PubMed  Google Scholar 

  • Griffiths E, Gupta RS (2006b) Molecular signatures in protein sequences that are characteristics of the phylum Aquificae. Int J Syst Evol Microbiol 56:99–107

    CAS  PubMed  Google Scholar 

  • Griffiths E, Gupta RS (2007) Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153:2648–2654

    CAS  PubMed  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172

    PubMed Central  PubMed  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RS (2000a) The natural evolutionary relationships among prokaryotes. Crit Rev Microbiol 26:111–131

    CAS  PubMed  Google Scholar 

  • Gupta RS (2000b) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    CAS  PubMed  Google Scholar 

  • Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    CAS  PubMed  Google Scholar 

  • Gupta RS (2005) Molecular sequences and the early history of life. In: Sapp J (ed) Microbial phylogeny and evolution: concepts and controversies. Oxford, New York, pp 160–183

    Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526

    CAS  PubMed  Google Scholar 

  • Gupta RS (2010) Applications of conserved indels for understanding microbial phylogeny. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 135–150

    Google Scholar 

  • Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol 29:3397–3412

    CAS  PubMed  Google Scholar 

  • Gupta RS (2013) Phylum Aquificae. In: The prokaryotes. Springer, New York

    Google Scholar 

  • Gupta RS, Bhandari V (2011) Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie Van Leeuwenhoek 100:1–34

    PubMed  Google Scholar 

  • Gupta RS, Gao B (2010) Recent advances in understanding microbial systematics. In: Xu J (ed) Microbial population genetics. Caister Academic Press, Norfolk, pp 1–14

    Google Scholar 

  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    PubMed  Google Scholar 

  • Harriott OT, Huber R, Stetter KO, Betts PW, Noll KM (1994) A cryptic miniplasmid from the hyperthermophilic bacterium Thermotoga sp. strain RQ7. J Bacteriol 176:2759–2762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber R, Hannig M (2006) Thermotogales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 899–922

    Google Scholar 

  • Huber R, Langworthy T, König H, Thomm M, Woese C, Sleytr U, Stetter K (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Huber R, Woese C, Langworthy T, Kristjansson J, Stetter K (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    CAS  Google Scholar 

  • Jannasch H, Huber R, Belkin S, Stetter K (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104

    Google Scholar 

  • Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560

    CAS  PubMed  Google Scholar 

  • Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97

    CAS  PubMed  Google Scholar 

  • Jiang Z, Li X, Yang S, Li L, Li Y, Feng W (2006) Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritima on wheat straw pulp. Appl Microbiol Biotechnol 70:65–71

    CAS  PubMed  Google Scholar 

  • Kallnik V, Schulz C, Schweiger P, Deppenmeier U (2011) Properties of recombinant Strep-tagged and untagged hyperthermophilic D-arabitol dehydrogenase from Thermotoga maritima. Appl Microbiol Biotechnol 90:1285–1293

    CAS  PubMed  Google Scholar 

  • Kazakov AE, Rodionov DA, Alm E, Arkin AP, Dubchak I, Gelfand MS (2009) Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. J Bacteriol 191:52–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim BC, Lee YH, Lee HS, Lee DW, Choe EA, Pyun YR (2002) Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol Lett 212:121–126

    CAS  PubMed  Google Scholar 

  • Kim S, Lee DS, Choi IS, Ahn SJ, Kim YH, Bae HJ (2010) Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19:489–497

    CAS  PubMed  Google Scholar 

  • Klenk HP, Meier TD, Durovic P, Schwass V, Lottspeich F, Dennis PP, Zillig W (1999) RNA polymerase of Aquifex pyrophilus: implications for the evolution of the bacterial rpoBC operon and extremely thermophilic bacteria. J Mol Evol 48:528–541

    CAS  PubMed  Google Scholar 

  • Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542

    CAS  PubMed  Google Scholar 

  • Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27:741–747

    CAS  PubMed  Google Scholar 

  • Kuwabara T, Kawasaki A, Uda I, Sugai A (2011) Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int J Syst Evol Microbiol 61:1622–1627

    CAS  PubMed  Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    PubMed  Google Scholar 

  • Lee DW, Jang HJ, Choe EA, Kim BC, Lee SJ, Kim SB, Hong YH, Pyun YR (2004) Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol 70:1397–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95:7933–7938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Park SH, Shim JH, Lee HS, Tang SY, Park CS, Park KH (2004) In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr Res 339:2789–2797

    CAS  PubMed  Google Scholar 

  • Liang DW, Fang HH, Zhang T (2009) Microbial characterization and quantification of an anaerobic sludge degrading dimethyl phthalate. J Appl Microbiol 106:296–305

    CAS  PubMed  Google Scholar 

  • Liebl W, Winterhalter C, Baumeister W, Armbrecht M, Valdez M (2008) Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 190:1350–1358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48(Pt 3):1007–1013

    CAS  PubMed  Google Scholar 

  • Lucas S, Han J, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Teshima H, Detter JC, Han C, Tapia R, Land M, Hauser L, Kyrpides NC, Ivanova N, Pagani I, Vannier P, Oger P, Bartlett DH, Noll KM, Woyke T, Jebbar M (2012) Complete genome sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3. J Bacteriol 194:5974–5975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig W, Klenk H-P (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 49–65

    Google Scholar 

  • Ludwig W, Neumaier J, Klugbauer N, Brockmann E, Roller C, Jilg S, Reetz K, Schachtner I, Ludvigsen A, Bachleitner M et al (1993) Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes. Antonie Van Leeuwenhoek 64:285–305

    CAS  PubMed  Google Scholar 

  • Lupas A, Muller S, Goldie K, Engel AM, Engel A, Baumeister W (1995) Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima. J Mol Biol 248:180–189

    CAS  PubMed  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    CAS  PubMed  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mamo G, Kasture S, Faryar R, Hashim S, Hatti-Kaul R (2010) Surfactants from xylan: production of n-octyl xylosides using a highly thermostable xylanase from Thermotoga neapolitana. Process Biochem 45:700–705

    CAS  Google Scholar 

  • Manca MC, Nicolaus B, Lanzotti V, Trincone A, Gambacorta A, Peter-Katalinic J, Egge H, Huber R, Stetter KO (1992) Glycolipids from Thermotoga maritima, a hyperthermophilic microorganism belonging to bacteria domain. Biochim Biophys Acta 1124:249–252

    CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCutchen CM, Duffaud GD, Leduc P, Petersen AR, Tayal A, Khan SA, Kelly RM (1996) Characterization of extremely thermostable enzymatic breakers (alpha-1,6-galactosidase and beta-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. Biotechnol Bioeng 52:332–339

    CAS  PubMed  Google Scholar 

  • Menendez C, Martinez D, Trujillo LE, Mazola Y, Gonzalez E, Perez ER, Hernandez L (2012) Constitutive high-level expression of a codon-optimized beta-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol 97(3):1201–1212

    PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Joulian C, Magot M, Thomas P, Tholozan JL, Ollivier B (2007) Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44

    CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL, Garcia JL, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174

    CAS  PubMed  Google Scholar 

  • Mongodin EF, Hance IR, DeBoy RT, Gill SR, Daugherty S, Huber R, Fraser CM, Stetter K, Nelson KE (2005) Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J Bacteriol 187:4935–4944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nanavati DM, Thirangoon K, Noll KM (2006) Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 72:1336–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    CAS  PubMed  Google Scholar 

  • Nesbo CL, Bapteste E, Curtis B, Dahle H, Lopez P, Macleod D, Dlutek M, Bowman S, Zhaxybayeva O, Birkeland NK, Doolittle WF (2009) The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea. J Bacteriol 191:1974–1978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nesbo CL, Bradnan DM, Adebusuyi A, Dlutek M, Petrus AK, Foght J, Doolittle WF, Noll KM (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393

    CAS  PubMed  Google Scholar 

  • Nesbo CL, Dlutek M, Doolittle WF (2006) Recombination in Thermotoga: implications for species concepts and biogeography. Genetics 172:759–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nesbo CL, Kumaraswamy R, Dlutek M, Doolittle WF, Foght J (2010) Searching for mesophilic Thermotogales bacteria: “mesotogas” in the wild. Appl Environ Microbiol 76:4896–4900

    PubMed Central  PubMed  Google Scholar 

  • Nesbo CL, L’Haridon S, Stetter KO, Doolittle WF (2001) Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol Biol Evol 18:362–375

    CAS  PubMed  Google Scholar 

  • Nesbo CL, Nelson KE, Doolittle WF (2002) Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima. J Bacteriol 184:4475–4488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunoura T, Hirai M, Imachi H, Miyazaki M, Makita H, Hirayama H, Furushima Y, Yamamoto H, Takai K (2010) Kosmotoga arenicorallina sp. nov. a thermophilic and obligately anaerobic heterotroph isolated from a shallow hydrothermal system occurring within a coral reef, southern part of the Yaeyama Archipelago, Japan, reclassification of Thermococcoides shengliensis as Kosmotoga shengliensis comb. nov., and emended description of the genus Kosmotoga. Arch Microbiol 192:811–819

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007) Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 57:467–471

    CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Park CS, Yeom SJ, Lim YR, Kim YS, Oh DK (2010) Characterization of a recombinant thermostable L: -rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of L-lyxose and L-mannose. Biotechnol Lett 32:1947–1953

    CAS  PubMed  Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    CAS  Google Scholar 

  • Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Kublanov IV, Reysenbach AL, Kolganova TV, Bonch-Osmolovskaya EA (2011a) Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 61:1160–1164

    CAS  PubMed  Google Scholar 

  • Podosokorskaya OA, Merkel AY, Kolganova TV, Chernyh NA, Miroshnichenko ML, Bonch-Osmolovskaya EA, Kublanov IV (2011b) Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 61:2697–2701

    CAS  PubMed  Google Scholar 

  • Postec A, Ciobanu M, Birrien JL, Bienvenu N, Prieur D, Le Romancer M (2010) Marinitoga litoralis sp. nov., a thermophilic, heterotrophic bacterium isolated from a coastal thermal spring on Ile Saint-Paul, Southern Indian Ocean. Int J Syst Evol Microbiol 60:1778–1782

    CAS  PubMed  Google Scholar 

  • Postec A, Le Breton C, Fardeau ML, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221

    CAS  PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    CAS  PubMed  Google Scholar 

  • Rachel R, Engel AM, Huber R, Stetter KO, Baumeister W (1990) A porin-type protein is the main constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima. FEBS Lett 262:64–68

    CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    CAS  PubMed  Google Scholar 

  • Reysenbach AL (2001) Phylum BII. Thermotogae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 369–387

    Google Scholar 

  • Reysenbach AL, Liu Y, Lindgren AR, Wagner ID, Sislak CD, Mets A, Schouten S (2013) Mesoaciditoga lauensis gen. nov., sp. nov., a moderate thermoacidophilic Thermotogales from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol. Aug 19. [Epub ahead of print]

    Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    CAS  PubMed  Google Scholar 

  • Rodionova IA, Yang C, Li X, Kurnasov OV, Best AA, Osterman AL, Rodionov DA (2012) Diversity and versatility of the Thermotoga maritima sugar kinome. J Bacteriol 194:5552–5563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    CAS  PubMed  Google Scholar 

  • Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM, Sosinski B (2011) Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic alpha-amylase. Biotechnol Progr 27:351–359

    CAS  Google Scholar 

  • Schumann J, Wrba A, Jaenicke R, Stetter KO (1991) Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima. FEBS Lett 282:122–126

    CAS  PubMed  Google Scholar 

  • Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schonheit P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    CAS  PubMed  Google Scholar 

  • Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373

    CAS  PubMed  Google Scholar 

  • Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Evidence for a Gram-positive, eubacterial root of the tree of life. Mol Biol Evol 24:1761–1768

    CAS  PubMed  Google Scholar 

  • Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10:357–362

    PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    CAS  PubMed  Google Scholar 

  • Swanson RV, Sanna MG, Simon MI (1996) Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 178:484–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swithers KS, Dipippo JL, Bruce DC, Detter C, Tapia R, Han S, Goodwin LA, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Mikhailova N, Land ML, Nesbo CL, Gogarten JP, Noll KM (2011a) Genome sequence of Kosmotoga olearia strain TBF 19.5.1, a thermophilic bacterium with a wide growth temperature range, isolated from the Troll B oil platform in the North Sea. J Bacteriol 193:5566–5567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swithers KS, Dipippo JL, Bruce DC, Detter C, Tapia R, Han S, Saunders E, Goodwin LA, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Mikhailova N, Lykidis A, Land ML, Brettin T, Stetter KO, Nelson KE, Gogarten JP, Noll KM (2011b) Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near Ribeira Quente, the Azores. J Bacteriol 193:5869–5870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Synowiecki J, Grzybowska B, Zdzieblo A (2006) Sources, properties and suitability of new thermostable enzymes in food processing. Crit Rev Food Sci Nutr 46:197–205

    CAS  PubMed  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17

    CAS  PubMed  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    CAS  PubMed  Google Scholar 

  • Tiboni O, Cantoni R, Creti R, Cammarano P, Sanangelantoni AM (1991) Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid sequence of elongation factor G and organization of the Thermotoga str operon. J Mol Evol 33:142–151

    CAS  PubMed  Google Scholar 

  • Urios L, Cueff-Gauchard V, Pignet P, Postec A, Fardeau ML, Ollivier B, Barbier G (2004) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957

    CAS  PubMed  Google Scholar 

  • Valas RE, Bourne PE (2011) The origin of a derived superkingdom: how a Gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6:16

    PubMed Central  PubMed  Google Scholar 

  • Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100:177–189

    PubMed  Google Scholar 

  • Van Ooteghem SA, Jones A, Van Der LD, Dong B, Mahajan D (2004) H(2) production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26:1223–1232

    PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watts JE, Wu Q, Schreier SB, May HD, Sowers KR (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3:710–719

    CAS  PubMed  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita MA, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    CAS  PubMed  Google Scholar 

  • Williams D, Fournier GP, Lapierre P, Swithers KS, Green AG, Andam CP, Gogarten JP (2011) A rooted net of life. Biol Direct 6:45

    PubMed Central  PubMed  Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter K (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

  • Yu JS, Noll KM (1997) Plasmid pRQ7 from the hyperthermophilic bacterium Thermotoga species strain RQ7 replicates by the rolling-circle mechanism. J Bacteriol 179:7161–7164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamost BL, Nielsen HK, Starnes RL (1991) Thermostable enzymes for industrial applications. J Ind Microbiol Biotechnol 8:71–81

    CAS  Google Scholar 

  • Zhaxybayeva O, Swithers KS, Foght J, Green AG, Bruce D, Detter C, Han S, Teshima H, Han J, Woyke T, Pitluck S, Nolan M, Ivanova N, Pati A, Land ML, Dlutek M, Doolittle WF, Noll KM, Nesbo CL (2012) Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date. Genome Biol Evol 4:700–708

    PubMed  Google Scholar 

  • Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the National Science and Engineering Research Council of Canada to RSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bhandari, V., Gupta, R.S. (2014). The Phylum Thermotogae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_118

Download citation

Publish with us

Policies and ethics