Skip to main content

Joint Modeling of Imaging and Genetics

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

We propose a unified Bayesian framework for detecting genetic variants associated with a disease while exploiting image-based features as an intermediate phenotype. Traditionally, imaging genetics methods comprise two separate steps. First, image features are selected based on their relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the selected features. In contrast, our method performs these tasks simultaneously to ultimately assign probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient approximate inference algorithm that handles high dimensionality of imaging genetic data. We evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also illustrate the application of the method on ADNI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batmanghelich, N.K., Taskar, B., Davatzikos, C.: Generative-discriminative basis learning for medical imaging. IEEE Trans. Med. Imaging 31(1), 51–69 (2012)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Carbonetto, P., Stephens, M.: Scalable Variational Inference for Bayesian Variable Selection in Regression, and its Accuracy in Genetic Association Studies. Bayesian Analysis 7, 73–108 (2012)

    Article  MathSciNet  Google Scholar 

  4. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C., ADNI: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  5. Filippini, N., Rao, A., Wetten, S., Gibson, R.A., et al.: Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage 44(3), 724–728 (2009)

    Article  Google Scholar 

  6. Harold, D., Abraham, R., Hollingworth, P., Sims, R., et al.: Genome-wide association study identifies variants at clu and picalm associated with Alzheimer’s disease. Nat. Genet. 41(10), 1088–1093 (2009)

    Article  Google Scholar 

  7. Hernandez-Laborto, J.M., Hernandezi-Lobato, D.: Convergent Expectation Propagation in Linear Models with Spike-and-Slab Priors (December 2011)

    Google Scholar 

  8. Jaakkola, T.S., Jordan, M.I.: Bayesian Paramater Estimation via Variational Methods. Statistics and Computing (10), 25–37 (2000)

    Google Scholar 

  9. Le Floch, E., Guillemot, V., Frouin, V., Pinel, P., et al.: Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares. Neuroimage 63(1), 11–24 (2012)

    Article  Google Scholar 

  10. Lee, J.H., Cheng, R., Graff-Radford, N., Foroud, T., et al.: Analyses of the national institute on aging late-onset Alzheimer’s disease family study: implication of additional loci. Archives of Neurology 65(11), 1518 (2008)

    Google Scholar 

  11. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. IEEE Trans. Med. Imaging 31(2), 474–486 (2012)

    Article  Google Scholar 

  12. Lvovs, D., Favorova, O.O., Favorov, A.V.: A polygenic approach to the study of polygenic diseases. Acta Naturae 4(3), 59 (2012)

    Google Scholar 

  13. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America 15(4), 869 (2005)

    Article  Google Scholar 

  14. O’Hara, R.B., Sillanpää, M.J.: A Review of Bayesian Variable Selection Methods: What, How and Which. Bayesian Analisis 4(1), 85–118 (2009)

    Article  Google Scholar 

  15. Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., et al.: A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr. Bull. 35(1), 96–108 (2009)

    Article  Google Scholar 

  16. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  Google Scholar 

  17. Sabuncu, M.R., Van Leemput, K.: The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 99–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Stein, J.L., Hua, X., Lee, S., Ho, A.J., et al.: Voxelwise genome-wide association study (vGWAS). Neuroimage 53(3), 1160–1174 (2010)

    Article  Google Scholar 

  19. Vounou, M., Janousova, E., Wolz, R., Stein, J.L., et al.: Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease. Neuroimage 60(1), 700–716 (2012)

    Article  Google Scholar 

  20. Vounou, M., Nichols, T.E., Montana, G., ADNI: Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. Neuroimage 53(3), 1147–1159 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batmanghelich, N.K., Dalca, A.V., Sabuncu, M.R., Golland, P. (2013). Joint Modeling of Imaging and Genetics. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics