Skip to main content

The Smoothing Transform: A Review of Contraction Results

  • Conference paper
  • First Online:
Random Matrices and Iterated Random Functions

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 53))

Abstract

Given a sequence (C, T) = (C, T 1, T 2, ) of real-valued random variables, the associated so-called smoothing transform \(\mathcal{S}\) maps a distribution F from a subset Γ of distributions on \(\mathbb{R}\) to the distribution of \(\sum _{i\geq 1}T_{i}X_{i} + C\), where X 1, X 2, are iid with common distribution F and independent of (C, T). This review aims at providing a comprehensive account of contraction properties of \(\mathcal{S}\) on subsets Γ specified by the existence of moments up to a given order like, for instance, \({\mathcal{P}}^{p}(\mathbb{R}) =\{ F:\int \vert x{\vert }^{p}\,F(dx) < \infty \}\) for p > 0 or \(\mathcal{P}_{c}^{p}(\mathbb{R}) =\{ F \in {\mathcal{P}}^{p}(\mathbb{R}):\int x\,F(dx) = c\}\) for p ≥ 1. The metrics used here are the minimal p -metric and the Zolotarev metric ζ p , both briefly introduced in Sect. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldous, D., Steele, J.M.: The objective method: probabilistic combinatorial optimization and local weak convergence. Probab. Discret. Struct. 110, 1–72 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alsmeyer, G., Meiners, M.: Fixed points of inhomogeneous smoothing transforms. J. Differ. Equ. Appl. 18, 1287–1304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alsmeyer, G., Meiners, M.: Fixed points of the smoothing transform: two-sided solutions. Probab. Theory Relat. Fields 155(1–2), 165–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alsmeyer, G., Rösler, U.: The best constant in the Topchii-Vatutin inequality for martingales. Stat. Probab. Lett. 65(3), 199–206 (2003)

    Article  MATH  Google Scholar 

  5. Alsmeyer, G., Iksanov, A., Rösler, U.: On distributional properties of perpetuities. J. Theor. Probab. 22(3), 666–682 (2009)

    Article  MATH  Google Scholar 

  6. Alsmeyer, G., Biggins, J.D., Meiners, M.: The functional equation of the smoothing transform. Ann. Probab. 40(5), 2069–2105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alsmeyer, G., Damek, E., Mentemeier, S.: Precise tail index of fixed points of the two-sided smoothing transform. In: Alsmeyer, G., Löwe, M. (eds.) Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics, vol. 53. Springer, Heidelberg (2013)

    Google Scholar 

  8. Baringhaus, L., Grübel, R.: On a class of characterization problems for random convex combinations. Ann. Inst. Stat. Math. 49(3), 555–567 (1997)

    Article  MATH  Google Scholar 

  9. Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14(1), 25–37 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biggins, J.D., Kyprianou, A.E.: Seneta-Heyde norming in the branching random walk. Ann. Probab. 25(1), 337–360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biggins, J.D., Kyprianou, A.E.: Fixed points of the smoothing transform: the boundary case. Electron. J. Probab. 10, 609–631 (2005). (electronic)

    Google Scholar 

  12. Burkholder, D.L.: Martingale transforms. Ann. Math. Stat. 37, 1494–1504 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. In: Probability Theory, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley, 1970/1971, vol. II, pp. 223–240. University of California Press, Berkeley (1972)

    Google Scholar 

  14. Caliebe, A.: Symmetric fixed points of a smoothing transformation. Adv. Appl. Probab. 35(2), 377–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caliebe, A., Rösler, U.: Fixed points with finite variance of a smoothing transformation. Stoch. Process. Appl. 107(1), 105–129 (2003)

    Article  MATH  Google Scholar 

  16. Collamore, J.F., Vidyashankar, A.N.: Large deviation tail estimates and related limit laws for stochastic fixed point equations. In: Alsmeyer, G., Löwe, M. (eds.) Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics, vol. 53. Springer, Heidelberg (2013)

    Google Scholar 

  17. Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41(1), 45–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durrett, R., Liggett, T.M.: Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64(3), 275–301 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elton, J.H.: A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34(1), 39–47 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldie, C.M., Maller, R.A.: Stability of perpetuities. Ann. Probab. 28(3), 1195–1218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Graf, S., Mauldin, R.D., Williams, S.C.: The exact Hausdorff dimension in random recursive constructions. Mem. Am. Math. Soc. 71(381), x + 121 (1988)

    Google Scholar 

  22. Grübel, R., Rösler, U.: Asymptotic distribution theory for Hoare’s selection algorithm. Adv. Appl. Probab. 28(1), 252–269 (1996)

    Article  MATH  Google Scholar 

  23. Guivarc’h, Y.: Sur une extension de la notion de loi semi-stable. Ann. Inst. Henri Poincaré Probab. Stat. 26(2), 261–285 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Probability and Mathematical Statistics. Academic [Harcourt Brace Jovanovich Publishers], New York (1980)

    Google Scholar 

  25. Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iksanov, A.M.: Elementary fixed points of the BRW smoothing transforms with infinite number of summands. Stoch. Process. Appl. 114(1), 27–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jelenković, P.R., Olvera-Cravioto, M.: Implicit renewal theory and power tails on trees. Adv. Appl. Probab. 44(2), 528–561 (2012)

    Article  MATH  Google Scholar 

  28. Jelenković, P.R., Olvera-Cravioto, M.: Information ranking and power laws on trees. Adv. Appl. Probab. 42(4), 1057–1093 (2010)

    Article  MATH  Google Scholar 

  29. Jelenković, P.R., Olvera-Cravioto, M.: Implicit renewal theorem for trees with general weights. Stoch. Proc. Appl. 122(9), 3209–3238 (2012)

    Article  MATH  Google Scholar 

  30. Liu, Q.: The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale. In: Trees, Versailles, 1995. Progress in Probability, vol. 40, pp. 51–80. Birkhäuser, Basel (1996)

    Google Scholar 

  31. Liu, Q.: Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. Appl. Probab. 30(1), 85–112 (1998)

    Article  MATH  Google Scholar 

  32. Liu, Q.: On generalized multiplicative cascades. Stoch. Process. Appl. 86(2), 263–286 (2000)

    Article  MATH  Google Scholar 

  33. Mauldin, R.D., Williams, S.C.: Random recursive constructions: asymptotic geometric and topological properties. Trans. Am. Math. Soc. 295(1), 325–346 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirek, M.: Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. Probab. Theory Relat. Fields 151(3–4), 705–734 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neininger, R., Rüschendorf, L.: A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14(1), 378–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Neininger, R., Rüschendorf, L.: Analysis of algorithms by the contraction method: additive and max-recursive sequences. In: Deuschel, J.-D., Greven, A. (eds.) Interacting Stochastic Systems, pp. 435–450. Springer, Berlin (2005)

    Chapter  Google Scholar 

  37. Penrose, M.D., Wade, A.R.: On the total length of the random minimal directed spanning tree. Adv. Appl. Probab. 38(2), 336–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rachev, S.T., Rüschendorf, L.: Probability metrics and recursive algorithms. Adv. Appl. Probab. 27(3), 770–799 (1995)

    Article  MATH  Google Scholar 

  39. Rösler, U.: A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl. 25(1), 85–100 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Rösler, U.: A fixed point theorem for distributions. Stoch. Process. Appl. 42(2), 195–214 (1992)

    Article  MATH  Google Scholar 

  41. Rösler, U., Rüschendorf, L.: The contraction method for recursive algorithms. Algorithmica 29(1–2), 3–33 (2001). Average-case analysis of algorithms (Princeton, NJ, 1998)

    Google Scholar 

  42. Rüschendorf, L.: On stochastic recursive equations of sum and max type. J. Appl. Probab. 43(3), 687–703 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vatutin, V.A., Topchiĭ, V.A.: The maximum of critical Galton-Watson processes, and left-continuous random walks. Theory Probab. Appl. 42(1), 17–27 (1998)

    Article  Google Scholar 

  44. Vervaat, W.: On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab. 11(4), 750–783 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Woyczyński, W.A.: On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab. Math. Stat. 1(2), 117–131 (1980)

    MATH  Google Scholar 

  46. Zolotarev, V.M.: Approximation of the distributions of sums of independent random variables with values in infinite-dimensional spaces. Theory Probab. Appl. 21(4), 721–737 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.A. was supported by Deutsche Forschungsgemeinschaft (SFB 878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold Alsmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alsmeyer, G. (2013). The Smoothing Transform: A Review of Contraction Results. In: Alsmeyer, G., Löwe, M. (eds) Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38806-4_9

Download citation

Publish with us

Policies and ethics