Skip to main content

Privacy-Preserving Multi-party Reconciliation Using Fully Homomorphic Encryption

  • Conference paper
Network and System Security (NSS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7873))

Included in the following conference series:

Abstract

Fully homomorphic cryptosystems allow the evaluation of arbitrary Boolean circuits on encrypted inputs and therefore have very important applications in the area of secure multi-party computation. Since every computable function can be expressed as a Boolean circuit, it is theoretically clear how to achieve function evaluation on encrypted inputs. However, the transformation to Boolean circuits is not trivial in practice. In this work, we design such a transformation for certain functions, i.e., we propose algorithms and protocols which make use of fully homomorphic encryption in order to achieve privacy-preserving multi-party reconciliation on ordered sets. Assuming a sufficiently efficient encryption scheme, our solution performs much better than existing approaches in terms of communication overhead and number of homomorphic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd SFCS, pp. 160–164. IEEE Computer Society, Washington, DC (1982)

    Google Scholar 

  2. Meyer, U., Wetzel, S., Ioannidis, S.: Distributed privacy-preserving policy reconciliation. In: ICC, pp. 1342–1349 (2007)

    Google Scholar 

  3. Meyer, U., Wetzel, S., Ioannidis, S.: New Advances on Privacy-Preserving Policy Reconciliation. In: IACR eprint 2010/64, http://eprint.iacr.org/2010/064

  4. Mayer, D.A., Teubert, D., Wetzel, S., Meyer, U.: Implementation and Performance Evaluation of Privacy-Preserving Fair Reconciliation Protocols on Ordered Sets. In: First ACM CODASPY (2011)

    Google Scholar 

  5. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Neugebauer, G., Meyer, U., Wetzel, S.: Fair and Privacy-Preserving Multi-party Protocols for Reconciling Ordered Input Sets. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 136–151. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Neugebauer, G., Meyer, U., Wetzel, S.: Fair and Privacy-Preserving Multi-Party Protocols for Reconciling Ordered Input Sets, Extended Version (2011), http://eprint.iacr.org/2011/200

  8. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010)

    Google Scholar 

  10. Li, R., Wu, C.: An unconditionally secure protocol for multi-party set intersection. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 226–236. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Sathya Narayanan, G., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A., Pandu Rangan, C.: Multi party distributed private matching, set disjointness and cardinality of set intersection with information theoretic security. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 21–40. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Patra, A., Choudhary, A., Rangan, C.P.: Selected areas in cryptography, pp. 71–91. Springer, Heidelberg (2009)

    Book  Google Scholar 

  13. Frikken, K.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy preserving multiset union. IACR Cryptology ePrint Archive, 138 (2011)

    Google Scholar 

  15. Mayer, D., Neugebauer, G., Meyer, U., Wetzel, S.: Enabling fair and privacy-preserving applications using reconciliation protocols on ordered sets. In: 34th IEEE Sarnoff Symposium. IEEE, Princeton (2011)

    Google Scholar 

  16. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: Proceedings of the 41st STOC, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  17. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Goldreich, O., Micali, S.M., Wigderson, A.: How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  19. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the 14th STOC, pp. 365–377. ACM Press, New York (1982)

    Google Scholar 

  20. Wegener, I.: The complexity of Boolean functions. John Wiley & Sons, Inc., New York (1987)

    MATH  Google Scholar 

  21. Weingarten, F.: Evaluating the Use of Fully Homomorphic Encryption in Secure Multi-Party Computation. Diploma Thesis, Research Group IT-Security, RWTH Aachen University (2011)

    Google Scholar 

  22. Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and secure computation, vol. 2011 (2011)

    Google Scholar 

  23. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University, Stanford, CA, USA, AAI3382729 (2009)

    Google Scholar 

  24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weingarten, F., Neugebauer, G., Meyer, U., Wetzel, S. (2013). Privacy-Preserving Multi-party Reconciliation Using Fully Homomorphic Encryption. In: Lopez, J., Huang, X., Sandhu, R. (eds) Network and System Security. NSS 2013. Lecture Notes in Computer Science, vol 7873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38631-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38631-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38630-5

  • Online ISBN: 978-3-642-38631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics