Skip to main content

The Gpr1/Fun34/YaaH Protein Family in the Nonconventional Yeast Yarrowia lipolytica and the Conventional Yeast Saccharomyces cerevisiae

  • Chapter
  • First Online:
Yarrowia lipolytica

Part of the book series: Microbiology Monographs ((MICROMONO,volume 24))

Abstract

The sequencing of the genomes of several organisms was the first step in understanding genome organisation, gene function and of course life itself. Until now very much information could be gained by searching for similarities between genes or structures and finding homologies or direct orthologous genes. But with the sequencing data, more and more questions arise, which cannot be answered by simply looking the data. Although the yeast Saccharomyces cerevisiae was the first eukaryotic organism, the genome of which was sequenced, almost 14 years later there are still 900 uncharacterised and 800 dubious genes (26 % at all). The unconventional yeast Yarrowia lipolytica also harbours a high number of genes with unknown function—ca. 2,300 (35 %). One hundred seventy out of 220 Yarrowia lipolytica specific genes with no homology to other yeasts are also uncharacterised, which should carry the “differences” between the yeast species. So far only 50 industrial useful genes were characterised (proteases, lipases, esterases, etc.).

Genes or gene products that do not have any known function have to be analysed in a more classical, genetical way. Especially the functions of membrane proteins which are resistant to a lot of investigation steps are only rarely elucidated. The Gpr1 protein of Yarrowia lipolytica is such an example. The function cannot be estimated by finding similarities to other proteins with known function. The more the information and phenotypic effects are available, the more complex the interacting network appears. This chapter will show the ongoing discovery of the function of the Gpr1/FUN34/YaaH protein family. This is especially shown for the Gpr1 protein from Yarrowia lipolytica and its orthologues in Saccharomyces cerevisiae. Here the different and also controversial facts are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angermann S (2009) Charakterisierung der GPR1-Homologen in der Hefe Yarrowia lipolytica und Deletion des GPR1-Homologen YALI0E27291g (GPR2). Diploma thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Augstein A (2001) Molekularbiologische Charakterisierung und funktionelle Analyse des GPR1-Genproduktes in der Hefe Yarrowia lipolytica. PhD thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Augstein A, Barth K et al (2003) Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology 149(Pt 3):589–600

    Article  PubMed  CAS  Google Scholar 

  • Barth G, Scheuber T (1993) Cloning of the isocitrate lyase gene (ICL1) from Yarrowia lipolytica and characterization of the deduced protein. Mol Gen Genet 241(3–4):422–430

    PubMed  CAS  Google Scholar 

  • Barth G, Weber H (1985) Improvement of sporulation in the yeast Yarrowia lipolytica. Antonie Van Leeuwenhoek 51(2):167–177

    Article  PubMed  CAS  Google Scholar 

  • Barth G, Weber H (1987) Genetic analysis of the gene ICL1 of the yeast Yarrowia lipolytica. Yeast 3(4):255–262

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Jensen LJ et al (2004a) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H et al (2004b) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  • Blattner FR, Plunkett G 3rd et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Boer VM, de Winde JH et al (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278(5):3265–3274

    Article  PubMed  CAS  Google Scholar 

  • Brandt P, Ramlow S et al (1996) Nucleotide sequence analysis of a 32,500 bp region of the right arm of Saccharomyces cerevisiae chromosome IV. Yeast 12(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Buchweitz J (2007) Funktionelle Analyse des Membranproteins Gpr1p in der Hefe Yarrowia lipolytica. Diploma thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Carmelo V, Santos H et al (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Casal M, Cardoso H et al (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142(Pt 6):1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Casal M, Paiva S et al (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181(8):2620–2623

    PubMed  CAS  Google Scholar 

  • Daley DO, Rapp M et al (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308(5726):1321–1323

    Article  PubMed  CAS  Google Scholar 

  • De Hertogh B, Carvajal E et al (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genomics 2(4–5):154–170

    PubMed  Google Scholar 

  • De Hertogh B, Hancy F et al (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172(2):771–781

    Article  PubMed  Google Scholar 

  • Dillschneider A (2003) Expressionsstudien der dem Gpr1 Protein aus Yarrowia lipolytica homologen Proteine in der Hefe Saccharomyces cerevisiae. Diploma thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Emanuelsson O, Nielsen H et al (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Foster JW (2000) Microbial responses to acid stress. ASM, Washington, DC

    Google Scholar 

  • Fuchs J (2010) Isolation des Gpr1p-enthaltenen Komplexes aus der Hefe Yarrowia lipolytica bzw. des Ycr010cp-enthaltenen Komplexes aus Saccharomyces cerevisiae zur Charakterisierung der Proteininteraktionspartner. Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Gentsch M (2005) Funktionelle analyse und Charakterisierung des Gpr1-Proteins in der Hefe Yarrowia lipolytica. PhD thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Gentsch M, Barth G (2005) Carbon source dependent phosphorylation of the Gpr1 protein in the yeast Yarrowia lipolytica. FEMS Yeast Res 5(10):909–917

    Article  PubMed  CAS  Google Scholar 

  • Gentsch M, Kuschel M et al (2007) Mutations at different sites in members of the Gpr1/Fun34/YaaH protein family cause hypersensitivity to acetic acid in Saccharomyces cerevisiae as well as in Yarrowia lipolytica. FEMS Yeast Res 7(3):380–390

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG et al (1996) Life with 6000 genes. Science 274(5287):546, 563–567

    Article  PubMed  CAS  Google Scholar 

  • Gori K, Mortensen HD et al (2007) Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species. J Dairy Sci 90(11):5032–5041

    Article  PubMed  CAS  Google Scholar 

  • Guaragnella N, Butow RA (2003) ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssy1-Ptr3-Ssy5 amino acid sensor system. J Biol Chem 278(46):45882–45887

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Haurie V, Perrot M et al (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276(1):76–85

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Morooka N et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006.0007

    Article  PubMed  Google Scholar 

  • Hirano W, Gotoh I et al (2005) Membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1 (MTCBP-1) acts as an eukaryotic aci-reductone dioxygenase (ARD) in the methionine salvage pathway. Genes Cells 10(6):565–574

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Jacq C, Alt-Morbe J et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature 387(6632 Suppl):75–78

    PubMed  CAS  Google Scholar 

  • James R, Dean DO et al (1993) Five open reading frames upstream of the dnaK gene of E. coli. DNA Seq 3(5):327–332

    PubMed  CAS  Google Scholar 

  • Krebs HA, Wiggins D et al (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214(3):657–663

    PubMed  CAS  Google Scholar 

  • Kren A, Mamnun YM et al (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23(5):1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Kujau M, Weber H et al (1992) Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase. Yeast 8(3):193–203

    Article  PubMed  CAS  Google Scholar 

  • Kuschel M (2006) Funktionelle analyse von Proteinen der Gpr1/Fun34/yaaH Proteinfamilie in den Hefen Yarrowia lipolytica und Saccharomyces cerevisiae. PhD thesis, Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Lalo D, Stettler S et al (1993) Two yeast chromosomes are related by a fossil duplication of their centromeric regions. C R Acad Sci III 316(4):367–373

    PubMed  CAS  Google Scholar 

  • Lalo D, Stettler S et al (1994) Organization of the centromeric region of chromosome XIV in Saccharomyces cerevisiae. Yeast 10(4):523–533

    Article  PubMed  CAS  Google Scholar 

  • Langkjaer RB, Cliften PF et al (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421(6925):848–852

    Article  PubMed  CAS  Google Scholar 

  • Lascaris R, Bussemaker HJ et al (2003) Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol 4(1):R3

    Article  PubMed  Google Scholar 

  • Makuc J, Paiva S et al (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Ueda Y et al (1980) Role and control of isocitrate lyase in Candida lipolytica. J Bacteriol 144(2):692–697

    PubMed  CAS  Google Scholar 

  • Ogrydziak D, Bassel J et al (1982) Development of the genetic map of the yeast Saccharomycopsis lipolytica. Mol Gen Genet 188(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358

    PubMed  CAS  Google Scholar 

  • Paiva S, Devaux F et al (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21(3):201–210

    Article  PubMed  CAS  Google Scholar 

  • Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113(Pt 11):1923–1928

    PubMed  CAS  Google Scholar 

  • Palkova Z, Janderova B et al (1997) Ammonia mediates communication between yeast colonies. Nature 390(6659):532–536

    Article  PubMed  CAS  Google Scholar 

  • Palkova Z, Devaux F et al (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13(11):3901–3914

    Article  PubMed  CAS  Google Scholar 

  • Perkins EL, Sterling JF et al (1999) Yeast and human genes that affect the Escherichia coli SOS response. Proc Natl Acad Sci USA 96(5):2204–2209

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Toth A et al (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11(13):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Reinders J, Zahedi RP et al (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Reinders J, Wagner K et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 6(11):1896–1906

    Article  PubMed  CAS  Google Scholar 

  • Ricicova M, Kucerova H et al (2007) Association of putative ammonium exporters Ato with detergent-resistant compartments of plasma membrane during yeast colony development: pH affects Ato1p localisation in patches. Biochim Biophys Acta 1768(5):1170–1178

    Article  PubMed  CAS  Google Scholar 

  • Schlegel S (2005) Identifizierung von Interaktionspartnern des Gpr1-Proteins in der Hefe Yarrowia lipolytica. Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Schuller C, Mamnun YM et al (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15(2):706–720

    Article  PubMed  Google Scholar 

  • Sickmann A, Reinders J et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100(23):13207–13212

    Article  PubMed  CAS  Google Scholar 

  • Skala J, Purnelle B et al (1992) The complete sequence of a 10.8 kb segment distal of SUF2 on the right arm of chromosome III from Saccharomyces cerevisiae reveals seven open reading frames including the RVS161, ADP1 and PGK genes. Yeast 8(5):409–417

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tzschoppe K (1998) Lokalisierung und Untersuchungen zur Funktionsaufklärung des Gpr1p (“Glyoxylate pathway regulator”) Proteins in der Hefe Yarrowia lipolytica unter Anwendung des “grün fluoreszierenden Proteins” (Gfp). Institute of Microbiology, Dresden University of Technology, Dresden

    Google Scholar 

  • Tzschoppe K, Augstein A et al (1999) trans-dominant mutations in the GPR1 gene cause high sensitivity to acetic acid and ethanol in the yeast Yarrowia lipolytica. Yeast 15(15):1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Devaux F et al (2004) Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J Biol Chem 279(36):37973–37981

    Article  PubMed  CAS  Google Scholar 

  • Werner K (2009) Studies on secretion of Gpr1 protein in Yarrowia lipolytica and of the Gpr1p orthologues in Saccharomyces cerevisiae. Dresden University of Technology, Institute of Microbiology, Dresden

    Google Scholar 

  • Yoshikawa A, Isono K (1990) Chromosome III of Saccharomyces cerevisiae: an ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes. Yeast 6(5):383–401

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Mori H et al (1992) Systematic sequencing of the Escherichia coli genome: analysis of the 0–2.4 min region. Nucleic Acids Res 20(13):3305–3308

    Article  PubMed  CAS  Google Scholar 

  • Zikanova B, Kuthan M et al (2002) Amino acids control ammonia pulses in yeast colonies. Biochem Biophys Res Commun 294(5):962–967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthäus, F., Barth, G. (2013). The Gpr1/Fun34/YaaH Protein Family in the Nonconventional Yeast Yarrowia lipolytica and the Conventional Yeast Saccharomyces cerevisiae . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38320-5_7

Download citation

Publish with us

Policies and ethics