Skip to main content

Obesity, Energy Balance, and Cancer: A Mechanistic Perspective

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

Nearly 36 % of adults and 20 % of children in the USA are obese, defined as a body mass index (BMI) ≥30 kg/m2. Obesity, which is accompanied by metabolic dysregulation often manifesting in the metabolic syndrome, is an established risk factor for many cancers. Within the growth-promoting, proinflammatory environment of the obese state, cross talk between macrophages, adipocytes, and epithelial cells occurs via obesity-associated hormones, cytokines, and other mediators that may enhance cancer risk and/or progression. This chapter synthesizes the evidence on key biological mechanisms underlying the obesity–cancer link, with particular emphasis on obesity-associated enhancements in growth factor signaling, inflammation, and vascular integrity processes, as well as obesity-dependent microenvironmental perturbations, including the epithelial-to-mesenchymal transition. These interrelated pathways represent possible mechanistic targets for disrupting the obesity–cancer link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated kinase

BMI:

Body mass index

CR:

Caloric restriction

COX-2:

Cyclooxygenase-2

DIO:

Diet-induced obesity

EMT:

Epithelial-to-mesenchymal transition

FGF-2:

Fibroblast growth factor-2

IGF-1:

Insulin-like growth factor-1

JAK:

Janus kinase

mTOR:

Mammalian target of rapamycin

MCP-1:

Monocyte chemoattractant protein-1

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PAI-1:

Plasminogen activator inhibitor-1

PI3K:

Phosphatidylinositol 3-kinase

STAT:

Signal transducer activator of transcription

TNF-α:

Tumor necrosis factor-alpha

tPA:

Tissue-type plasminogen activators

uPA:

Urokinase-type plasminogen activators

VEGF:

Vascular endothelial growth factor

ZEB1:

Zinc finger E-box-binding homeobox 1

References

  1. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241

    Article  PubMed  CAS  Google Scholar 

  2. Ford ES, Li C, Zhao G (2010) Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes 2:180–193

    Article  PubMed  Google Scholar 

  3. Hursting SD, Berger NA (2010) Energy balance, host-related factors, and cancer progression. J Clin Oncol 28:4058–4065

    Article  PubMed  Google Scholar 

  4. Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res 345320:13

    Google Scholar 

  5. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26:968–976

    Article  PubMed  CAS  Google Scholar 

  6. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity and the prevention of cancer: a global perspective. AICR, Washington, DC

    Google Scholar 

  7. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospective studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  8. Stocks T, Borena W, Strohmaier S, Bjorge T, Manjer J, Engeland A, Johansen D, Selmer R, Hallmans G, Rapp K, Concin H, Jonsson H, Ulmer H, Stattin P (2010) Cohort profile: the metabolic syndrome and cancer project (Me-Can). Int J Epidemiol 39:660–667

    Article  PubMed  Google Scholar 

  9. Braun S, Bitton-Worms K, LeRoith D (2011) The link between the metabolic syndrome and cancer. Int J Biol Sci 7:1003–1015

    Article  PubMed  CAS  Google Scholar 

  10. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  PubMed  CAS  Google Scholar 

  11. Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN (2010) Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis 31:83–89

    Article  PubMed  CAS  Google Scholar 

  12. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90

    Article  PubMed  CAS  Google Scholar 

  13. Memmott RM, Dennis PA (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664

    Article  PubMed  CAS  Google Scholar 

  14. Lindsley JE, Rutter J (2004) Nutrient sensing and metabolic decisions. Comp Biochem Physiol B: Biochem Mol Biol 139:543–559

    Article  Google Scholar 

  15. Moore T, Beltran LD, Carbajal S, Strom S, Traag J, Hursting SD, DiGiovanni J (2008) Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathway in multiple epithelial tissues. Cancer Prev Res 1:65–76

    Article  CAS  Google Scholar 

  16. De Angel RE, Conti CJ, Wheatley KE, Brenner AJ, deGraffenried LA, Hursting SD. The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by Rad001. Mol Carcinog Jan 30 [epub ahead of print]

    Google Scholar 

  17. Nogueira LM, Dunlap SM, Ford NA, Hursting SD (2012) Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocr Relat Cancer 19:57–68

    Article  PubMed  CAS  Google Scholar 

  18. Gautron L, Elmquist JK (2011) Sixteen years and counting: an update on leptin in energy balance. J Clin Invest 121:2087–2093

    Article  PubMed  CAS  Google Scholar 

  19. Villanueva EC, Myers MG (2008) Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond). 32(Suppl 7):S8–S12

    Google Scholar 

  20. Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M (2012) The role of adiponectin in human vascular physiology. Int J Cardiol 155:188–193

    Article  PubMed  Google Scholar 

  21. Barb D, Williams CJ, Neuwirth AK, Mantzoros CS (2007) Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr 86:s858–s866

    PubMed  Google Scholar 

  22. Stofkova A (2009) Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul 43:157–168

    PubMed  CAS  Google Scholar 

  23. Stattin P, Lukanova A, Biessy C, Soderberg S, Palmqvist R, Kaaks R, Olsson T, Jellum E (2004) Obesity and colon cancer: does leptin provide a link? Int J Cancer 109:149–152

    Article  PubMed  CAS  Google Scholar 

  24. Wu MH, Chou YC, Chou WY, Hsu GC, Chu CH, Yu CP, Yu JC, Sun CA (2009) Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer 100:578–582

    Article  PubMed  CAS  Google Scholar 

  25. Fenton JI, Hord NG, Lavigne JA, Perkins SN, Hursting SD (2005) Leptin, insulin-like growth factor-1, and insulin-like growth factor-2 are mitogens in ApcMin/+ but not Apc+/+ colonic epithelial cells. Cancer Epidemiol Biomarkers Prev 14:1646–1652

    Article  PubMed  CAS  Google Scholar 

  26. Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP (2008) Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer 98:370–379

    Article  PubMed  CAS  Google Scholar 

  27. Rzepka-Gorska I, Bedner R, Cymbaluk-Ploska A, Chudecka-Glaz A (2008) Serum adiponectin in relation to endometrial cancer and endometrial hyperplasia with atypia in obese women. Eur J Gynaecol Oncol 29:594–597

    PubMed  CAS  Google Scholar 

  28. Tian YF, Chu CH, Wh MH, Chang CL, Yang T, Chou YC, Hsu GC, Yu CP, Yu JC, Sun CA (2007) Anthropometric measures, plasma adiponectin, and breast cancer risk. Endocr Relat Cancer 14:669–677

    Article  PubMed  CAS  Google Scholar 

  29. Jung CH, Rhee EJ, Choi JH, Bae JC, Yoo SH, Kim WJ, Park CY, Mok JO, Kim CH, Lee WY, Oh KW, Park SW, Kim SW (2010) The relationship of adiponectin/leptin ratio with homeostasis model assessment insulin resistance index and metabolic syndrome in apparently healthy Korean male adults. Korean Diabetes J 34:237–243

    Article  PubMed  Google Scholar 

  30. Mirza S, Qu HQ, Li Q, Martinez PJ, Rentfro AR, McCormick JB, Fisher-Hoch SP (2011) Adiponectin/leptin ratio and metabolic syndrome in a Mexican American population. Clin Invest Med 34:E290

    PubMed  CAS  Google Scholar 

  31. Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F, Sacchetti L (2011) High leptin/adiponectin ratio and serum triglycerides are associated with an “at-risk” phenotype in young severely obese patients. Obesity 19:1492–1496

    Article  PubMed  CAS  Google Scholar 

  32. Cleary MP, Ray A, Rogozina OP, Dogan S, Grossman ME (2009) Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. Front Biosci 1:329–357

    Google Scholar 

  33. Ashizawa N, Yahata T, Quan J, Adachi S (2010) Yoshihara, Tanaka K. Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol 119:65–69

    Article  PubMed  CAS  Google Scholar 

  34. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, Chen HY, Hou ME, Yuan SS (2006) Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett 237:109–114

    Article  PubMed  CAS  Google Scholar 

  35. Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer: an inflammatory subject. Ann NY Acad Sci 1229:45–52

    Article  PubMed  CAS  Google Scholar 

  36. Subbaramaiah K, Howe LR, Bhardway P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hia T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res 4:329–346

    Article  CAS  Google Scholar 

  37. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  PubMed  CAS  Google Scholar 

  38. O’Rourke RW (2009) Inflammation in obesity-related diseases. Surgery 145:255–259

    Article  PubMed  Google Scholar 

  39. Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114:71–83

    Article  PubMed  CAS  Google Scholar 

  40. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  41. Virchow R (1863) Die Krankenhasften Geschwulste. Verlag von August Hirchwald; Berlin, Germany. Aetologie der neoplastichen Geschwelste/Pathogenie der neoplastischen Geschwulste p 58

    Google Scholar 

  42. Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for patients? Curr Opin Pharmacol 9:351–369

    Article  PubMed  CAS  Google Scholar 

  43. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99:1501–1506

    Article  PubMed  CAS  Google Scholar 

  44. Del Prete A, Allavena P, Santoro G, Fumarulo R, Corsi MM, Mantovani A (2011) Molecular pathways in cancer-related inflammation. Biochem Med 21:264–275

    Article  Google Scholar 

  45. Foltz CJ, Fox JG, Cahill R, Murphy JC, Yan L, Shames B, Schauer DB (1998) Spontaneous inflammatory bowel disease in multiple mutant mouse lines: association with colonization by Helicobacter hepaticus. Helicobacter 3:69–78

    Article  PubMed  CAS  Google Scholar 

  46. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  47. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  PubMed  CAS  Google Scholar 

  48. Koki A, Khan NK, Woerner BM, Dannenberg AJ, Olson L, Seibert K, Edwards D, Hardy M, Isakson P, Masterrer JL (2002) Cyclooxygenase-2 in human pathological disease. Adv Exp Med Biol 507:177–184

    Article  PubMed  CAS  Google Scholar 

  49. Kunku JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659:15–30

    Article  Google Scholar 

  50. Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794

    Article  PubMed  CAS  Google Scholar 

  51. Liu Y, Tamimi RM, Collins LC, Schnitt SJ, Gilmore HL, Connolly JL, Colditz GA (2011) The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses’ Health Study. Breast Cancer Res Treat 129:175–184

    Article  PubMed  CAS  Google Scholar 

  52. Cao Y (2007) Angiogeneis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368

    Article  PubMed  CAS  Google Scholar 

  53. Renehan AG (2010) Body fatness and bevacizumab-based therapy in metastatic colorectal cancer. Gut 59:280–290

    Article  Google Scholar 

  54. Simkens LH, Koopman M, Mol L, Veldhuis GJ, Ten Huinink Bokkel D, Muller EW, Derleyn VA, Teerenstra S, Punt CJ (2011) Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer 47:2560–2567

    Article  PubMed  Google Scholar 

  55. Iwaki T, Urano T, Umemura K (2012) PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 157:291–298

    Article  PubMed  CAS  Google Scholar 

  56. Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 28:1357–1364

    Article  PubMed  CAS  Google Scholar 

  57. Muldowney JA, Chen Q, Blakemore DL, Vaughan DE (2012) Pentoxifylline lowers plasminogen activator inhibitor 1 levels in obese individuals: a pilot study. Angiology 21 Feb [epub ahead of print]

    Google Scholar 

  58. de Jong M, Maina T (2010) Of mice and humans: are they the same?–implications in cancer translational research. J Nucl Med 51:501–504

    Article  PubMed  Google Scholar 

  59. Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS (2008) Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75:75–84

    Article  PubMed  Google Scholar 

  60. Dunlap SM, Chiao LJ, Nogueira L, Usary J, Perou CM, Varticovski L, Hursting SD (2012) Obesity enhances epithelial-to-mesenchymal transition, cancer stem cell enrichment, and tumor progression in a novel Wnt-1 mammary cancer model. Cancer Prev Res 15 May (Epub ahead of print)

    Google Scholar 

  61. DeLellis K, Ingles S, Kolonel L, McKean-Cowdin R, Henderson B, Stanczyk F et al (2003) IGF1 genotype, mean plasma level and breast cancer risk in the Hawaii/Los Angeles multiethnic cohort. Br J Cancer 88:277–282

    Article  PubMed  CAS  Google Scholar 

  62. Baglietto L, English DR, Hopper JL, Morris HA, Tilley WD, Giles GG (2007) Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 16:763–768

    Article  PubMed  CAS  Google Scholar 

  63. Nunez NP, Perkins SN, Smith NC, Berrigan D, Berendes DM, Varticovski L, Barrett JC, Hursting SD (2008) Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer 60:534–541

    Article  PubMed  CAS  Google Scholar 

  64. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081

    Article  PubMed  CAS  Google Scholar 

  65. Sivakumar R, Koga H, Selvendiran K, Maeyama M, Ueno T, Sata M (2009) Autocrine loop for IGF-I receptor signaling in SLUG-mediated epithelial-mesenchymal transition. Int J Oncol 34:329–338

    PubMed  CAS  Google Scholar 

  66. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M et al (2008) Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68:2479–2488

    Article  PubMed  CAS  Google Scholar 

  67. Wysocki PJ, Wierusz-Wysocka B (2010) Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert Rev Mol Diagn 10:509–519

    Article  PubMed  CAS  Google Scholar 

  68. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511

    Article  PubMed  CAS  Google Scholar 

  69. Wu MH, Chou YC, Chou WY, Hsu GC, Chu CH, Yu CP et al (2009) Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer 100:578–582

    Article  PubMed  CAS  Google Scholar 

  70. Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP et al (2010) Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem 285:36551–36560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. S. Hursting is funded, in part, by grants from the National Cancer Institute (R01CA129409 and R01CA135306), the Breast Cancer Research Foundation (UTA09-001068), and the National Institute of Environmental Health Sciences (P30ES007784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Hursting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hursting, S.D. (2014). Obesity, Energy Balance, and Cancer: A Mechanistic Perspective. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics