Skip to main content

Matheuristics and Exact Methods for the Discrete (r|p)-Centroid Problem

  • Chapter
Metaheuristics for Bi-level Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 482))

Abstract

In the (r|p)-centroid problem, there are two decision makers which we refer to as a leader and a follower. They compete to serve customers from a given market by opening a certain number of facilities. The decision makers open facilities in turn. At first, the leader decides where to locate p facilities taking into account the follower’s reaction. Later on, the follower opens other r facilities. We assume that the customers’ preferences among the opened facilities are based only on the distances to these facilities rather than the quality of service provided by the decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseeva, E., Beresnev V., Kochetov, Y. et al.: Benchmark library: Discrete Location Problems, http://math.nsc.ru/AP/benchmarks/Competitive/p_me_comp_eng.html

  2. Alekseeva, E., Kochetova, N., Kochetov, Y., Plyasunov, A.: Heuristic and exact methods for the discrete (r |p)-centroid problem. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 11–22. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Ben–Ayed, O.: Bilevel linear programming. Comput. Oper. Res. 20(5), 485–501 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benati, S., Laporte, G.: Tabu search algorithms for the (r|X p )–medianoid and (r|p)–centroid problems. Location Science 2, 193–204 (1994)

    MATH  Google Scholar 

  5. Beresnev, V., Melnikov, A.: Approximate algorithms for the competitive facility location problem. J. Appl. Indust. Math. 5(2), 180–190 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bhadury, J., Eiselt, H., Jaramillo, J.: An alternating heuristic for medianoid and centroid problems in the plane. Comp. & Oper. Res. 30, 553–565 (2003)

    Article  MATH  Google Scholar 

  7. Burke, E.K., Kendall, G.: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, US (2005)

    MATH  Google Scholar 

  8. Campos-Rodríguez, C.M., Moreno Pérez, J.A.: Multiple voting location problems. European J. Oper. Res. 191, 437–453 (2008)

    Article  Google Scholar 

  9. Campos-Rodríguez, C., Moreno-Pérez, J.A.: Relaxation of the condorcet and simpson conditions in voting location. European J. Oper. Res. 145(3), 673–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campos-Rodríguez, C., Moreno-Pérez, J.A., Notelmeier, H., Santos-Peñate, D.R.: Two-swarm PSO for competitive location. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., et al. (eds.) NICSO 2008. SCI, vol. 236, pp. 115–126. Springer, Heidelberg (2009)

    Google Scholar 

  11. Campos-Rodríguez, C., Moreno-Pérez, J.A., Santos-Peñate, D.R.: Particle swarm optimization with two swarms for the discrete (r|p)-centroid problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 432–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Campos-Rodríguez, C.M., Moreno-Pérez, J.A., Santos-Peñate, D.: An exact procedure and LP formulations for the leader–follower location problem. Business and Economics TOP 18(1), 97–121 (2010)

    MATH  Google Scholar 

  13. Carrizosa, E., Davydov, I., Kochetov, Y.: A new alternating heuristic for the (r|p)–centroid problem on the plane. In: Operations Research Proceedings 2011, pp. 275–280. Springer (2012)

    Google Scholar 

  14. Davydov, I.: Tabu search for the discrete (r|p)–centroid problem. J. Appl. Ind. Math. (in press)

    Google Scholar 

  15. Davydov, I., Kochetov, Y., Plyasunov, A.: On the complexity of the (r|p)–centroid problem on the plane. TOP (in press)

    Google Scholar 

  16. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. In: Chatterjee, A., Siarry, P. (eds.) Methods and Case Studies. Springer, Heidelberg (2006)

    Google Scholar 

  17. Friesz, T.L., Miller, T., Tobin, R.L.: Competitive network facility location models: a survey. Regional Science 65, 47–57 (1988)

    Google Scholar 

  18. Goldman, A.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)

    Article  MathSciNet  Google Scholar 

  19. Ghosh, A., Craig, C.: A Location allocation model for facility planning in a competitive environment. Geographical Analysis 16, 39–51 (1984)

    Article  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and intractability (a guide to the theory of NP-completeness). W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  21. Glover, F., Laguna, M.: Tabu Search. Kluwer Acad. Publ., Boston (1997)

    Book  MATH  Google Scholar 

  22. Hakimi, S.L.: Locations with spatial interactions: competitive locations and games. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp. 439–478. Wiley & Sons (1990)

    Google Scholar 

  23. Hakimi, S.L.: On locating new facilities in a competitive environment. European J. Oper. Res. 12, 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hakimi, S.L.: On locating new facilities in a competitive environment. In: Annual ORSA-TIMS Meeting, Houston (1981)

    Google Scholar 

  25. Hotelling, H.: Stability in competition. Economic J. 39, 41–57 (1929)

    Article  Google Scholar 

  26. Hansen, P., Labbé, M.: Algorithms for voting and competitive location on a network. Transportation Science 22(4), 278–288 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. European J. Oper. Res. 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Küçükaudin, H., Aras, N., Altinel, I.K.: Competitive facility location problem with attractiveness adjustment of the follower. A bilevel programming model and its solution. European J. Oper. Res. 208, 206–220 (2011)

    Article  Google Scholar 

  29. Kariv, O., Hakimi, S.: An algoritmic approach to network location problems. The p-medians. SIAM J. Appl. Math. 37, 539–560 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kochetov, Y.A.: Facility location: discrete models and local search methods. In: Chvatal, V. (ed.) Combinatorial Optimization. Methods and Applications, pp. 97–134. IOS Press, Amsterdam (2011)

    Google Scholar 

  31. Kress, D., Pesch, E.: Sequential competitive location on networks. European J. Oper. Res. 217(3), 483–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics. Hybridizing Metaheuristics and Mathematical Programming. Annals of Information Systems, vol. 10 (2010)

    Google Scholar 

  33. Megiddo, N., Zemel, E., Hakimi, S.: The maximum coverage location problem. SIAM J. Algebraic and Discrete Methods 4, 253–261 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mladenovic, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median problem: a survey of metaheuristic approaches. European J. Oper. Res. 179, 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Noltemeier, H., Spoerhase, J., Wirth, H.: Multiple voting location and single voting location on trees. European J. Oper. Res. 181, 654–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Plastia, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program., Ser A. 100, 247–265 (2004)

    Article  Google Scholar 

  37. Plastria, F., Vanhaverbeke, L.: Discrete models for competitive location with foresight. Comp. & Oper. Res. 35(3), 683–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Roboredo, M.C., Pessoa, A.A.: A branch-and-cut algorithm for the discrete (r|p)-centroid problem. European J. Oper. Res. (in press)

    Google Scholar 

  39. Resende, M., Werneck, R.: On the implementation of a swap-based local search procedure for the p-median problem. In: Ladner, R.E. (ed.) Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments (ALENEX 2003), pp. 119–127. SIAM, Philadelphia (2003)

    Google Scholar 

  40. Spoerhase, J.: Competitive and Voting Location. In: Dissertation. Julius Maximilian University of WĂĽrzburg (2010)

    Google Scholar 

  41. Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facility Location - A Survey of Applications and Methods, pp. 367–386. Springer, New York (1995)

    Chapter  Google Scholar 

  42. Serra, D., ReVelle, C.: Market capture by two competitors: the pre-emptive capture problem. J. Reg. Sci. 34(4), 549–561 (1994)

    Article  Google Scholar 

  43. Spoerhase, J., Wirth, H. (r,p)-centroid problems on paths and trees. J. Theor. Comp. Sci. Archive. 410(47–49), 5128–5137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reactions of competitors already in the market. European J. Oper. Res. 219, 9–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Smith, J.C., Lim, C., Alptekinoglu, A.: Optimal mixed-integer programming and heuristic methods for a bilevel Stackelberg product introduction game. Nav. Res. Logist. 56(8), 714–729 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Santos-Peñate, D.R., Suárez-Vega, R., Dorta-González, P.: The leader-follower location model. Networks and Spatial Economics 7, 45–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Teramoto, S., Demaine, E., Uehara, R.: Voronoi game on graphs and its complexity. In: IEEE Symposium on Computational Intelligence and Games, pp. 265–271 (2006)

    Google Scholar 

  48. Vasilev, I.L., Klimentova, K.B., Kochetov, Y.A.: New lower bounds for the facility location problem with clients preferences. Comp. Math. Math. Phys. 49(6), 1055–1066 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Alekseeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alekseeva, E., Kochetov, Y. (2013). Matheuristics and Exact Methods for the Discrete (r|p)-Centroid Problem. In: Talbi, EG. (eds) Metaheuristics for Bi-level Optimization. Studies in Computational Intelligence, vol 482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37838-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37838-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37837-9

  • Online ISBN: 978-3-642-37838-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics