Skip to main content

Assessment of Sagittal-Plane Sound Localization Performance in Spatial-Audio Applications

  • Chapter
The Technology of Binaural Listening

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Sound localization in sagittal planes, SPs, including front-back discrimination, relies on spectral cues resulting from the filtering of incoming sounds by the torso, head and pinna. While acoustic spectral features are well-described by head-related transfer functions, HRTFs, models for SP localization performance have received little attention. In this article, a model predicting SP localization performance of human listeners is described. Listener-specific calibrations are provided for 17 listeners as a basis to predict localization performance in various applications. In order to demonstrate the potential of this listener-specific model approach, predictions for three applications are provided, namely, the evaluation of non-individualized HRTFs for binaural recordings, the assessment of the quality of spatial cues for the design of hearing-assist devices and the estimation and improvement of the perceived direction of phantom sources in surround-sound systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These and all other HRTFs are from http://www.kfs.oeaw.ac.at/hrtf.

References

  1. V. R. Algazi, C. Avendano, and R. O. Duda. Elevation localization and head-related transfer function analysis at low frequencies. J Acoust Soc Am, 109:1110–1122, 2001.

    Google Scholar 

  2. F. Asano, Y. Suzuki, and T. Sone. Role of spectral cues in median plane localization. J Acoust Soc Am, 88:159–168, 1990.

    Google Scholar 

  3. E. Blanco-Martin, F. J. Casajus-Quiros, J. J. Gomez-Alfageme, and L. I. Ortiz-Berenguer. Estimation of the direction of auditory events in the median plane. Appl Acoust, 71:1211–1216, 2010.

    Google Scholar 

  4. J. Blauert. Räumliches Hören (Spatial Hearing). S. Hirzel Verlag Stuttgart, 1974.

    Google Scholar 

  5. P. Bremen, M. M. van Wanrooij, and A. J. van Opstal. Pinna cues determine orientation response modes to synchronous sounds in elevation. J Neurosci, 30:194–204, 2010.

    Google Scholar 

  6. A. W. Bronkhorst. Localization of real and virtual sound sources. J Acoust Soc Am, 98:2542–2553, 1995.

    Google Scholar 

  7. S. Carlile, P. Leong, and S. Hyams. The nature and distribution of errors in sound localization by human listeners. Hear Res, 114:179–196, 1997.

    Google Scholar 

  8. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am, 99:3615–3622, 1996.

    Google Scholar 

  9. B. R. Glasberg and B. C. J. Moore. Derivation of auditory filter shapes form notched-noise data. Hear Res, 47:103–138, 1990.

    Google Scholar 

  10. M. J. Goupell, P. Majdak, and B. Laback. Median-plane sound localization as a function of the number of spectral channels using a channel vocoder. J Acoust Soc Am, 127:990–1001, 2010.

    Google Scholar 

  11. J. Hilson, D. Gray, and M. DiCosimo. Dolby Surround Mixing Manual. Dolby Laboratories, Inc., San Francisco, CA, 2005. chapter 5—Mixing techniques.

    Google Scholar 

  12. M. Hofman and J. Van Opstal. Binaural weighting of pinna cues in human sound localization. Exp Brain Res, 148:458–470, 2003.

    Google Scholar 

  13. P. M. Hofman and A. J. V. Opstal. Spectro-temporal factors in two-dimensional human sound localization. J Acoust Soc Am, 103:2634–2648, 1998.

    Google Scholar 

  14. P. M. Hofman, J. G. A. van Riswick, and A. J. van Opstal. Relearning sound localization with new ears. Nature Neurosci, 1:417–421, 1998.

    Google Scholar 

  15. T. Holman. Surround Sound: Up and Running. Focal Press, 2008.

    Google Scholar 

  16. S. Hwang and Y. Park. Interpretations on pricipal components analysis of head-related impulse responses in the median plane. J Acoust Soc Am, 123:EL65-EL71, 2008.

    Google Scholar 

  17. K. Iida, M. Itoh, A. Itagaki, and M. Morimoto. Median plane localization using a parametric model of the head-related transfer function based on spectral cues. Appl Acoust, 68:835–850, 2007.

    Google Scholar 

  18. Int Telecommunication Union, Geneva, Switzerland. Multichannel stereophonic sound system with and without accompanying picture, 2012. Recommendation ITU-R BS.775-3.

    Google Scholar 

  19. C. Jin, M. Schenkel, and S. Carlile. Neural system identification model of human sound localization. J Acoust Soc Am, 108:1215–1235, 2000.

    Google Scholar 

  20. B. F. Katz. Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. J Acoust Soc Am, 110:2440–2448, 2001.

    Google Scholar 

  21. W. Kreuzer, P. Majdak, and Z. Chen. Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. J Acoust Soc Am, 126:1280–1290, 2009.

    Google Scholar 

  22. A. Kulkarni and H. S. Colburn. Role of spectral detail in sound-source localization. Nature, 396:747–749, 1998.

    Google Scholar 

  23. A. Kulkarni and H. S. Colburn. Infinite-impulse-response models of the head-related transfer function. J Acoust Soc Am, 115:1714–1728, 2004.

    Google Scholar 

  24. E. H. A. Langendijk and A. W. Bronkhorst. Contribution of spectral cues to human sound localization. J Acoust Soc Am, 112:1583–1596, 2002.

    Google Scholar 

  25. E. A. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank. J Acoust Soc Am, 110:3107–3118, 2001.

    Google Scholar 

  26. F. R. S. Lord Rayleigh. On our perception of sound direction. Philos Mag, 13:214–232, 1907.

    Google Scholar 

  27. E. A. Macpherson and J. C. Middlebrooks. Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. J Acoust Soc Am, 111:2219–2236, 2002.

    Google Scholar 

  28. E. A. Macpherson and J. C. Middlebrooks. Vertical-plane sound localization probed with ripple-spectrum noise. J Acoust Soc Am, 114:430–445, 2003.

    Google Scholar 

  29. E. A. Macpherson and A. T. Sabin. Binaural weighting of monaural spectral cues for sound localization. J Acoust Soc Am, 121:3677–3688, 2007.

    Google Scholar 

  30. P. Majdak, M. J. Goupell, and B. Laback. 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Atten Percept Psycho, 72:454–469, 2010.

    Google Scholar 

  31. J. C. Makous and J. C. Middlebrooks. Two-dimensional sound localization by human listeners. J Acoust Soc Am, 87:2188–2200, 1990.

    Google Scholar 

  32. M. I. Mandel, R. J. Weiss, and D. P. W. Ellis. Model-based expectation-maximization source separation and localization. IEEE Trans Audio Speech Proc, 18:382–394, 2010.

    Google Scholar 

  33. T. May, S. van de Par, and A. Kohlrausch. A probabilistic model for robust localization based on a binaural auditory front-end. IEEE Trans Audio Speech Lang Proc, 19:1–13, 2011.

    Google Scholar 

  34. J. C. Middlebrooks. Individual differences in external-ear transfer functions reduced by scaling in frequency. J Acoust Soc Am, 106:1480–1492, 1999.

    Google Scholar 

  35. J. C. Middlebrooks. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J Acoust Soc Am, 106:1493–1510, 1999.

    Google Scholar 

  36. J. C. Middlebrooks and D. M. Green. Sound localization by human listeners. Annu Rev Psychol, 42:135–159, 1991.

    Google Scholar 

  37. J. C. Middlebrooks and D. M. Green. Observations on a principal components analysis of head-related transfer functions. J Acoust Soc Am, 92:597–599, 1992.

    Google Scholar 

  38. H. Møller, M. F. Sørensen, D. Hammershøi, and C. B. Jensen. Head-related transfer functions of human subjects. J Audio Eng Soc, 43:300–321, 1995.

    Google Scholar 

  39. M. Morimoto. The contribution of two ears to the perception of vertical angle in sagittal planes. J Acoust Soc Am, 109:1596–1603, 2001.

    Google Scholar 

  40. R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient auditory filterbank based on the gammatone function. APU, Cambridge, UK, 1988.

    Google Scholar 

  41. V. Pulkki. Virtual sound source positioning using vector base amplitude panning. J Audio Eng Soc, 45:456–466, 1997.

    Google Scholar 

  42. B. Rakerd, W. M. Hartmann, and T. L. McCaskey. Identification and localization of sound sources in the median sagittal plane. J Acoust Soc Am, 106:2812–2820, 1999.

    Google Scholar 

  43. C. L. Searle and I. Aleksandrovsky. Binaural pinna disparity: Another auditory localization cue. J Acoust Soc Am, 57:448–455, 1975.

    Google Scholar 

  44. M. A. Senova, K. I. McAnally, and R. L. Martin. Localization of virtual sound as a function of head-related impulse response duration. J Audio Eng Soc, 50:57–66, 2002.

    Google Scholar 

  45. E. A. Shaw. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am, 56:1848–1861, 1974.

    Google Scholar 

  46. R. H. Y. So, B. Ngan, A. Horner, J. Braasch, J. Blauert, and K. L. Leung. Toward orthogonal non-individualised head-related transfer functions for forward and backward directional sound: cluster analysis and an experimental study. Ergonomics, 53:767–781, 2010.

    Google Scholar 

  47. P. Søndergaard and P. Majdak. The auditory modeling toolbox. In J. Blauert, editor, The technology of binaural listening, chapter 2. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  48. G. Theile and H. Wittek. Principles in surround recordings with height. In Proc. 130th AES Conv. Audio Engr. Soc., page Convention Paper 8403, London, UK, 2011.

    Google Scholar 

  49. M. M. van Wanrooij and A. J. van Opstal. Relearning sound localization with a new ear. J Neurosci, 25:5413–5424, 2005.

    Google Scholar 

  50. J. Vliegen and A. J. V. Opstal. The influence of duration and level on human sound localization. J Acoust Soc Am, 115:1705–1703, 2004.

    Google Scholar 

  51. T. Walder. Schallquellenlokalisation mittels Frequenzbereich-Kompression der Außenohrübertragungsfunktionen (sound-source localization through warped head-related transfer functions). Master’s thesis, University of Music and Performing Arts, Graz, Austria, 2010.

    Google Scholar 

  52. A. J. Watkins. Psychoacoustical aspects of synthesized vertical locale cues. J Acoust Soc Am, 63:1152–1165, 1978.

    Google Scholar 

  53. F. L. Wightman and D. J. Kistler. The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am, 91:1648–1661, 1992.

    Google Scholar 

  54. F. L. Wightman and D. J. Kistler. Monaural sound localization revisited. J Acoust Soc Am, 101:1050–1063, 1997.

    Google Scholar 

  55. P. Zakarauskas and M. S. Cynader. A computational theory of spectral cue localization. J Acoust Soc Am, 94:1323–1331, 1993.

    Google Scholar 

  56. P. X. Zhang and W. M. Hartmann. On the ability of human listeners to distinguish between front and back. Hear Res, 260:30–46, 2010.

    Google Scholar 

  57. M. S. A. Zilany and I. C. Bruce. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am, 120:1446–1466, 2006.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank H. S. Colburn and two anonymous reviewers for constructive comments on earlier versions of this manuscript. This research was supported by the Austrian Science Fund, FWF, project P 24124–N13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Majdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgartner, R., Majdak, P., Laback, B. (2013). Assessment of Sagittal-Plane Sound Localization Performance in Spatial-Audio Applications. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics